
Elements of an
Effective Software
OrganizationBuild

Rebecca Murphey
& Otto Hilska

Introduction

Copyright © 2024 Swarmia. All rights reserved.

Book version: 2.0—January 2024

Introduction

	 Preface														 iv

 1 	INTRODUCTION											 3

	 How we approach effectiveness in this book	 	 	 4

	 How we talk about teams	 	 	 	 	 6

	 Setting the stage for an effectiveness effort	 7

	 Measurement and goal-setting	 10

	 A note on frameworks	 14

	 Table stakes	 14

	 What we left out	 17

	 What to expect from this book	 19

 2 	BUSINESS OUTCOMES									 20

	 Organizing for outcomes	 21

	 Balancing engineering investments	 38

	 What to do when you’re drowning in KTLO	 43

	 Setting priorities	 45

	 OKRs: A framework to communicate priorities	 47

	 Managing cross-team initiatives	 52

 3 	DEVELOPER PRODUCTIVITY							 58

	 Defining developer productivity 	 59

	 Measuring productivity	 68

	 Classic productivity challenges	 77

	 Setting goals around productivity	 78

	 Tools and tactics	 80

ii

Contents

Introduction

 4 	 DEVELOPER EXPERIENCE							 84

	 Measuring developer experience	 85

	 Identifying improvements	 86

	 Fighting back against interruptions	 93

	 Setting experience goals	 105

 5 	 PUTTING IT ALL TOGETHER							 110

	 Identifying and eliminating delivery bottlenecks	 111

	 Driving an effectiveness effort	 119

	 Managing change	 124

	 What’s next?	 128

	 About the authors	 131

	 About Swarmia	 131

	 Acknowledgments	 132

	 Feedback and errata	 132

iii

E
ngineering organizations are operating in

unfamiliar territory. Not so long ago, hiring

more	engineers	was	the	obvious	solution	

to increase output and drive growth. Many

engineering leaders fell into the trap of

believing	that	the	sheer	increase	in	num-

bers	would	lead	to	getting	more	done.

Looking	back,	this	never	truly	made	sense.	We’ve	known	

since The Mythical Man-Month that adding people — espe-

cially if you do so quickly — is actually a recipe for slowing

down,	yet	it	was	a	path	well-worn	by	countless	companies.

Now the landscape has changed, and sometimes it feels

like	it	happened	overnight.	Suddenly,	there’s	abundant	uncer-

tainty	about	how	to	deliver	more	business	outcomes	with	

fi	xed-size	teams.	Moreover,	no	company	wants	to	do	it	in	a	

iv

Preface
by Otto Hilska

Founder & CEO of Swarmia

Preface

way that strains the engineers doing the work. In fact, the most

positive changes can occur with systematic approaches that

make	individual	engineers	more	productive	by	improving	the	

experience	of	building	software	in	your	organization.	

Leaders	are	responsible	for	building	the	framework	that	

allows teams and individuals to succeed in this new environ-

ment.	It’s	no	longer	about	throwing	more	bodies	into	the	fray	

and	hoping	everything	works	out.	Today,	it’s	about	implement-

ing	transparency,	defi	ning	supportive	processes,	and	driving	

coherent strategies that align the goals and incentives of the

software	engineers,	their	teams,	and	the	products	they	build.

This	book	exists	to	help	you	navigate	that	space.	There’s	

a	never-ending	stream	of	guidance	out	there	about	each	of	

these topics — developer experience, developer productivity,

and	driving	business	outcomes	—	but	very	few	resources	that	

bring	all	of	them	together	under	a	single	umbrella.	This	book	

attempts to close that gap.

The	systems	and	ecosystems	we	build	to	help	us	deliver	

software products are fundamentally human, and no organi-

zation is exactly like another. Whether you’re at the outset of a

journey	to	hone	the	value	created	by	your	software	develop-

ment organization or you’re already somewhere along the way,

fi	nding	the	best	path	to	success	starts	by	understanding	the	

unique context of your company.

To	that	end,	this	book	is	not	a	mere	collection	of	recom-

mendations;	it’s	a	guide	to	understanding	the	bigger	picture	

of	engineering	eff	ectiveness,	including	hard-earned	wisdom	

about	the	inevitable	pitfalls	and	dead-end	paths	that	may	

tempt you along the way.

If	you	fi	nd	this	topic	as	interesting	as	I	do,	this	book	is	for	

you. Happy reading.

v

Preface

Introduction

Build

By Rebecca Murphey & Otto Hilska

Elements of an
Effective Software

Organization

2

Introduction Introduction

.1Introduction

Build: Elements of an Effective

Software Organization

3

Introduction

T
here are plenty of origin stories for a

company’s decision to invest in sustain-

ing and improving the effectiveness of

its engineering organization. Sometimes

it’s a simple conversation among leaders:

“Is it just me, or did we ship things faster

in the past?” Sometimes it’s preceded by painful failure: “We

missed most of our objectives last half, and product and engi-

neering are pointing fingers at each other.” And sometimes, it’s

driven more by curiosity about an opportunity than an acute

or targeted need: “I’ve heard of SPACE and DORA, and I think

they could help us.”

Each of these origin stories — and every other story that

eventually leads a person like you to read a book like this — has

a unique motivation. How the problem is stated tells you much

about the underlying issues you’ll find when you dig into the

situation. It’s relatively easy to adopt a new approach when

you can operate with curiosity and a mindset of continuous

improvement, but it’s much more challenging when you’re

trying to solve an acute problem within the constraints of a

company’s current size, age, and culture.

This book aims to collect the best practices of software

product development, drawing on lean principles, modern

product and project management principles, systems thinking,

and much more. Much has been written on these individual

How the problem is stated tells
you much about the underlying
issues you’ll find when you dig
into the situation.

4

Introduction Introduction

topics across various books — see our recommended reading

at the end of each of the following chapters — but here, we

attempt to pull it all together into a coherent framework for

running a software organization.

How we approach effectiveness
We like to think of effectiveness by breaking it down into

three concepts: 1 business outcomes, 2 developer pro-

ductivity, and 3 developer experience. Delivering business

outcomes is the ultimate goal of any software organization.

Once you know where you’re headed, developer productivity

is about getting there quickly. Developer experience is about

discovering how you might increase the continuous time an

engineer can focus on valuable work while remaining satisfied

and engaged with their job.

Many discussions of engineering effectiveness focus on

just one of these concepts without recognizing that they are

all intertwined. In this book, we look at each area individually

and then discuss how to bring them together into a coherent

and actionable plan for improvement.

BUSINESS

OUTCOMES

DEVELOPER

PRODUCTIVITY

DEVELOPER

EXPERIENCE

THE EFFECTIVENESS TRIAD

5

Introduction

 1 BUSINESS OUTCOMES

A fundamental challenge of delivering a successful product

is intelligently allocating finite resources to seemingly infinite

problems and opportunities. The decisions involved here are

difficult at any organization size, and they aren’t limited to soft-

ware engineering. Organizational design plays a huge role in

how well a business can achieve its goals. There’s a real risk of

trying to do too many things at once, with the inevitable result

that few of them get done well, if at all. In larger organizations,

these decisions often happen organically and implicitly, with

fuzzy lines of accountability and no clear overarching picture

of who’s spending time (and money) on what.

Effective software organizations focus their
investments on the right outcomes.

 2 DEVELOPER PRODUCTIVITY

Without intention and intervention, the pace of shipping value

will decline over time, and doing what has always worked won’t

always keep working. Engineering leaders are increasingly held

accountable for the value their organizations deliver — and

they are increasingly at risk of people outside engineering

deciding how to quantify this value. The processes that move

Many discussions of engineering
effectiveness focus on just one of
these concepts without recognizing
that they are all intertwined.

6

Introduction Introduction

work through an engineering organization — ideally creating

customer value at the end — are evolving, emergent, and often

difficult to inspect or understand. As an organization grows

larger, the leverage points to drive improvement move from

the team to the organization as a whole, and the forces that

speed or impede delivery become more varied and broadly

distributed.

Effective software organizations make fast
and consistent progress toward their goals.

 3 DEVELOPER EXPERIENCE

Developer experience is arguably the other side of the devel-

oper productivity coin, and it can be hard to separate the two.

Developer experience focuses on what it’s like to work within

your organization’s code and deliver its software. Developer

experience efforts should emphasize eliminating wait time and

interruptions, ensuring that your codebase isn’t making work

harder than it needs to be.

Effective software organizations give engineers
the support and tools they need to feel engaged.

How we talk about teams
Throughout the book, we use a few words consistently to

describe the scope of a situation, problem, or solution.

7

Introduction

•	 The business. The overarching entity that pays the

bills. It encompasses the engineering organization

as well as other functions such as sales, marketing,

customer support, finance, and more.

•	 The organization or the engineering organization.

The group of people responsible for delivering

technical solutions to achieve business objectives,

including software engineers, product managers,

product designers, and other supporting roles.

•	 The group. A group of related engineering teams,

usually led by a director, that’s part of a larger

engineering organization.

•	 The team. A cross-functional group of people

focused on delivering technical solutions to specific

business problems, usually in the context of a specific

problem, product, or persona.

Setting the stage
for an effectiveness effort
If creating an effective software organization is A Thing You

Should Care About in your role — whether you’re a line man-

ager or the CTO — it’s good to ask yourself a few questions to

prepare for the conversation ahead.

•	 Why is this important? What’s motivating the com-

pany to spend time on this topic? How does it beat

out other goals? How high up does the plan go?

•	 Why is this important now? Software organizations

can always be more effective, but now is suddenly the

time you’re paying attention. What changed?

8

Introduction Introduction

•	 What have you tried so far? How did you decide you

needed to do something else?

•	 What metrics are you tracking today? Where are they

falling short? How are they changing over time?

Smaller companies may still need to nail the delivery

fundamentals at the team level, while larger companies may

form dedicated teams to standardize, automate, and speed up

development processes. At a certain size, it takes effort just to

sustain the same amount of productivity; even if the engineer-

ing headcount isn’t growing, the codebase is, and quickly. As a

company grows, its investment in its continued effectiveness

needs to grow too, as the later that investment starts, the more

debt must be paid down. At a certain size, you’ll consider a ded-

icated platform team to keep that software development eco-

system humming as you continually accumulate lines of code.

A company’s culture determines the likely pace, breadth,

and “stickiness” of its improvements. Companies that highly

E
FF

EC
T

IV
E

N
E

S
S

BaselineBaseline

TIME

CHALLENGES INCREASE OVER TIME

Continuous improvement

“Normal” scale-induced trajectory

Credit: John Cutler

9

Introduction

value team technical autonomy face different challenges

than companies with standardized tooling and centralized

processes. The depth of trust throughout the leadership chain

will influence how readily people embrace productivity efforts,

and the company’s engineering ladder will play a big part in

who raises their hand to do the work. When thinking about how

to drive change, don’t pick fights with the culture. Instead, use

it to your advantage whenever you can and reshape it (gently)

only when you must.

Answering the following questions will deepen your under-

standing of how these three factors come into play.

•	 What does “better” look like? Your engineering

effectiveness investment proposal was approved.

It’s two years later, and everything is better. You can’t

believe you used to spend time doing … what? What

has changed? Looking at the current reality, what’s

kept you from making these changes?

•	 Who benefits when we achieve better? This is a trick

question because the answer is “everyone,” from

product to sales, customer support to engineering to

users. Where will you find reliable allies and champi-

ons for more effective delivery — even if it comes at

some near-term costs such as slower delivery of bug

fixes and new features?

•	 What kinds of potential changes are in scope? Does

the business think of this as an engineering problem,

a business problem, or both? What is the scope of

the most senior person who will sponsor necessary

change, even if it has near-term costs? Who will warm

up to the cause after a couple of success stories?

10

Introduction Introduction

•	 What are the biggest obstacles you expect? Now is

not the time for rosy optimism. Talk openly with anyone

who wants to pitch in about what will be hard. Maybe

two different engineering organizations aren’t aligned

on what’s important; maybe you expect the CEO to

defer to product priorities instead. Maybe everyone’s

on the same page but you worry that procuring a tool

will take six months. This sort of effort can go sideways

in many regards, so anticipate whatever you can.

Each company takes its own path to arrive at the start of

its productivity journey, and the path it follows after that will

likewise be unique. There is plenty to learn from what others

are doing, plenty we can standardize as an industry, and plenty

you can discover from this book.

Anyone who tells you there’s One True Way is lying. The

way to improve your situation will be unique to the size, age,

and culture of the company in which you operate.

Measurement and goal-setting
Being a software leader would be a lot easier if we didn’t have

to figure out whether we were doing a good job. Of course,

every data-driven bone in our bodies says we need to measure

something to know we’re going in the right direction, and every

company leader would likely agree.

We’ll delve into specific measurements in the upcoming

chapters, but a few caveats generally apply to measuring

things in this space.

First, it’s easy to get bogged down in figuring out how

to measure the impact of something rather than doing The

Thing. With enough time and code, you’ll probably get there,

11

Introduction

but remember to ask yourself whether that time is worth the

benefit. Sometimes, all you need to do is 1 make sure no

one thinks The Thing is a terrible idea, 2 do The Thing, and
 3 check in with your users or stakeholders to see whether

they noticed that you did The Thing. Don’t fall into the trap

of delaying action — and thereby delaying benefit — just

because you haven’t yet worked out how you’ll count some-

thing. Be prepared to advocate for and celebrate clear-if-un-

measurable wins.

Second, metrics — especially qualitative ones — can be

difficult to interpret correctly and consistently. The space is

full of both lagging indicators of success and indicators that

can be hard to trust because they’re biased by a moment

in time. Self-reported satisfaction scores, for example, are

deeply subject to moment-in-time bias, even to the whims of

traffic on the commute to work that day. They can drop quickly

and tend to recover slowly. Decisions on how you slice your

data can also hide problems. An average metric might over-

emphasize outliers, while p50 can hide pathological cases at

p99. On the other hand, looking at p99 all the time can lead to

optimizations that benefit relatively few use cases.

Third, there’s a fine balance between metrics that guide

improvements and those that make people perceive a lack

of trust. However, this tension shouldn’t stop you from mea-

suring. Instead, it emphasizes the need to be open and trans-

parent about the data you collect, how you collect it, and how

you use it to evaluate individuals and teams. Be transparent

with individual contributors (ICs) about what you’re measuring

and how it will be used. Make it easy for them to see the data

they’re contributing.

Finally, remember that these kinds of metrics work best

as conversation starters and pretty terribly as comparison

12

Introduction Introduction

metrics when there’s a change in context — for example, a

staffing change or a change in priorities. The conversations

the metrics drive will differ from team to team — teams tend to

have meaningful differences in their skill sets, tenure, seniority,

codebases, complexity, and so much more that it becomes

irresponsible to compare them head to head.

With these caveats in mind, you can see how goal-setting

around any metric in the effectiveness domain will likely have

some gotchas. Be especially wary of setting goals around

human-reported metrics — for example, a developer satisfac-

tion metric or one that counts how often engineers complain

about something.

Choosing metrics and tracking progress

The desire for measurement can paralyze an effectiveness

effort. Metrics are valuable, but a lack of them shouldn’t block

progress on well-known problems.

Decisions on how and whether to measure something

should be the output of a thoughtful and deliberative pro-

cess about what better would look like. It’s okay if some of

your ambitions are intangible, such as “Deploy issues shouldn’t

dominate our next developer survey.”

 The Goals, Signals, and Metrics framework is helpful here

— and note that metrics come last.

There’s a fine balance between
metrics that guide improvements
and those that make people
perceive a lack of trust.

13

Introduction

•	 Goals focus on outcomes, not the anticipated

implementation.

•	 Signals are things that humans can watch for to

know if you’re on track.

•	 Metrics are the actual things you measure and

report on to track progress toward the goal.

In this framework, you first agree that there’s a problem

worth solving. Then, you set a goal that, if achieved, would be

clearly understood as progress toward solving the problem.

Next, you have the “I know it when I see it” conversation — what

statements, if true, would have everyone nodding in agree-

ment that you were progressing? These are your signals.

Finally, you arrive at the metrics, but again, a word of cau-

tion: don’t beat yourself up to measure something when broad

agreement about the existence of a clear signal would be suf-

ficient to declare success, nor when the change has another,

more notable business impact. There’s a ton of accruing value

to measuring your development process, but not all aspects of

productivity can be measured conveniently, if at all.

Working on a goal often starts by establishing a baseline

for the current reality. Stay focused on the desired outcome,

not the metric or tactic. Keep your focus on making things

easier for engineers, use that focus to motivate increased

observability of processes, execute on the opportunities you

find, and know that quantitative data will sometimes disagree

with the stories you’ve been told.

You may initially find it difficult to set a specific target

for the metrics, and that’s not just okay but expected. When

tackling a problem, focus on trends — up or down and to the

right as appropriate. If you continue to focus on the issue

14

Introduction Introduction

over subsequent quarters, you’ll have more information to set

targets or acceptable thresholds.

A note on frameworks
There are numerous frameworks to help you improve your

software organization — SPACE and DORA are a couple that

are currently in fashion. Each framework is useful in its own

way, and they’re all worth knowing about, but none tell you what

to do in your particular situation. None of them can claim to

offer a single metric that you can observe and set goals around

— in fact, only DORA is particularly prescriptive about any

metrics at all.

If you approach the productivity space with a mindset of “I

need to implement DORA” or “We’ll just follow SPACE,” you’ll

likely have difficulty driving meaningful change. Frameworks

offer a way of thinking about a problem, not a to-do list. They’re

a skeleton on which you hang some ideas that will turn into a

plan, which you’ll then implement and iterate upon.

A framework can also offer guardrails against counterpro-

ductive decisions if stakeholders agree to it on principle. For

example, a core tenet of SPACE is that metrics that span the

framework can often be in tension with one another. This tenet

can be a good reminder when metrics aren’t moving the way

you might have expected.

Table stakes
Any effectiveness effort becomes significantly easier if you

adopt and embrace a few proven principles. These principles

are so essential that we’ll revisit them throughout the rest of

15

Introduction

this book, whose guidance will be of limited use if you don’t

also embrace or move toward these principles in your orga-

nization. Indeed, if your engineering organization struggles

to be effective, at least one of these principles is probably

absent.

	 1 	� Empowered teams. When teams can make autonomous

decisions about their work, organizations can respond

more quickly to changes, improve motivation, and ship

solutions more likely to meet customer needs. When

they must rely on others to make progress, the effec-

tiveness of their teams suffers.

	 2 	� Rapid feedback. Quick and frequent feedback enables

rapid learning and adjustments. This agility helps bet-

ter align the product with market needs and customer

expectations. When you have weeks-long feedback

cycles, a lot can go wrong between check-ins.

	 3 	�� Outcomes over outputs. Focus on the value and impact

(outcomes) of engineering work rather than just the

volume or efficiency of deliverables produced (out-

puts). This ensures that development efforts actually

contribute to business goals and customer value.

Let’s dig into each of these in more detail to see what they

look like in practice.

 1 EMPOWERED TEAMS

Empowering teams means delegating decision-making

authority to those closest to the work. Providing teams with

the necessary context and trusting them to make informed

decisions can enhance efficiency and motivation.

16

Introduction Introduction

Consider a scenario where a software development team

regularly encounters delays due to a cumbersome and out-

dated deployment process. Instead of management dictating

a specific solution, empowering the team would involve giving

them the authority to research, propose, and implement a

new deployment strategy. This could include choosing new

deployment tools, redesigning the deployment pipeline, or

adopting new practices like continuous deployment.

This approach recognizes that the team that knows the

deployment process is best positioned to improve it based on

their experience. It also makes the team more invested in the

outcome than if there’s just a top-down mandate. Allowing the

team to experiment and take risks can lead to more innovative

solutions than if decisions are made solely by management. It

also speeds up decision-making, as there’s no need for multi-

ple rounds of external approval and feedback.

Note that this doesn’t mean all decisions should or will

fall to individual teams; some decisions properly belong at

the organization or even business level. An empowered team

will feel confident in providing input and feedback on those

decisions when they have it.

 2 RAPID FEEDBACK

Rapid feedback can include frequent automated testing,

continuous integration, code review, stakeholder reviews, and

many other moments in the software development lifecycle

where you need to decide whether to proceed or change

course.

Delayed feedback results in rework, wasted time and effort,

and missed opportunities. We get feedback from our tools,

our peers, our stakeholders, and our customers; according to

17

Introduction

this principle, we want to solicit this feedback regularly and

frequently rather than bundling up large chunks of work for

one cumbersome and time-consuming mega-review.

When there is a need for an approval or review process,

one of the best ways to ensure rapid feedback is to establish

a feedback cadence so that there is never a large backlog

of work to be reviewed. By reviewing smaller batches, future

batches can be informed by the feedback on earlier batches,

rather than working on a large batch of work and then learning

at feedback time that you’ve missed the mark.

 3 OUTCOMES OVER OUTPUTS

Goals and success measurements should be based on out-

comes, such as customer satisfaction or market share, rather

than outputs, such as the number of features released, bugs

closed, or story points completed. Incentivizing teams based

on output volume can steer them to invest in quantity over

business impact.

When you align team objectives with business outcomes

and use metrics that reflect these outcomes, you encourage

innovation and creative problem-solving, ensuring that the

work contributes effectively to the organization’s goals.

The table on the next page highlights key differences

between the two approaches.

What we left out
There are a few topics you might expect to see in a book like

this that aren’t present — leadership, performance manage-

ment, and compensation, to name a few. This was a deliberate

Introduction

18

Introduction

Aspect Output-based approach Outcome-based approach

Definition
of success

The quantity of what
is produced, such as
features, documentation,
or lines of code.

The impact on customer
behavior and business
results, such as improved
customer satisfaction or
increased sales.

Key metrics

Measures include the num-
ber of features deployed,
code commit frequency,
and deadlines met.

Measures include customer
engagement metrics, con-
version rates, market share,
and revenue growth.

Development
focus

Focus is on executing a
predefined set of tasks and
deliverables.

Focus is on validating
hypotheses about customer
needs and business value by
delivering the smallest viable
increment.

Feedback
loop

Feedback is often related
to whether the product
is delivered on time and
within budget.

Feedback is based on how
well the product changes
user behavior or improves
key business metrics.

Decision-
making

The progress of deliv-
erables drives decisions
according to the project
timeline.

Decisions are driven by data
and insights about what will
move the needle on desired
outcomes.

Approach
to change

Changes are often viewed
as a setback or a sign of
planning failure.

Changes are viewed as
opportunities to learn and
pivot toward more impactful
results.

Team
alignment

Teams may work in silos,
with each department
focusing on their own set
of deliverables.

Cross-functional teams work
collaboratively, with a shared
understanding that the goal
is to achieve the desired
outcomes.

Response
to failure

When a feature or project
does not meet the speci-
fications or deadlines, it is
considered a failure.

Failure is viewed as a learning
opportunity that informs the
next iteration and brings the
team closer to achieving the
outcomes.

19

Introduction

choice to keep the book focused on the interaction among

business outcomes, developer productivity, and developer

experience.

Of course, leadership, performance management, and

compensation do play a role in the satisfaction of your engi-

neers, just like the technical tools they use. Although we don’t

address these topics at length, keep in mind that they can all

be levers for improvement.

What to expect from this book
So far, we’ve surveyed the engineering effectiveness land-

scape and all the factors likely to make your situation incon-

veniently unique. We also looked at three ways of working

— empowered teams, rapid feedback, and outcomes over

outputs — that are key to any effectiveness effort.

In the next three chapters, we’ll look at each of the areas

of effectiveness we outlined above: business outcomes, devel-

oper productivity, and developer experience. In these chap-

ters, we’ll share guidance that’s broadly applicable despite

company differences. We’ll conclude with a chapter that offers

a loose roadmap encompassing all three areas to address

organization-wide improvements in effectiveness.

Let’s get to work.

You’ll find resources related to the
book at swarmia.com/build

20

Business Outcomes Business Outcomes

2Business
Outcomes

Build: Elements of an Effective

Software Organization

Effective software organizations
focus their investments on the

right outcomes.

.

21

Business Outcomes

2
A

chieving business outcomes isn’t solely

about writing code or shipping new

features; it requires delivering tangible

results that align with business objec-

tives, all while maintaining product qual-

ity, efficient feature delivery, operational

stability, and user satisfaction.

In this chapter, we’ll explore how to structure a software

development organization. Then, we’ll share a framework to

guide engineering teams in balancing short-term gains with

long-term sustainability. We’ll wrap up by discussing practices

for successful prioritization.

Organizing for outcomes
The structure of an organization plays an integral role in

how well the organization can deliver business outcomes. An

organization’s job is to promote efficiency and productivity,

communicate effectively with organization members and

stakeholders, provide clarity in goals and alignment with busi-

ness goals, and ultimately, deliver on those goals.

Teams exist to manage complexity

Teams, not individuals, are the atomic units that make up an

engineering organization. In the beginning, an organization

may have only one software development team, and there’s lit-

tle complexity to manage. Team members have touched most

of the codebase, and the codebase is small and tidy enough.

Everyone knows everyone.

However, as a company accumulates new customers, fea-

tures, and business needs, the full scope of the software grows

22

Business Outcomes Business Outcomes

difficult for any single person to grasp. More and more of the

company’s software engineers have never touched critical

parts of the software. Finding the right person to ask a tech-

nical question sometimes becomes a multi-day adventure.

This is why we have teams. By dividing into teams, an orga-

nization can take on more complex problems and tasks while

effectively delivering business outcomes. The concept of a

team allows a small group of people to feel connected with

their objectives, codebase, and teammates.

At the same time, creating a team, by definition, creates a

silo. When you put a group of people together, you’re implicitly

saying that it’s more important for this group to be in sync with

each other than with those outside the team. Silos are often

considered in a negative light, but without some degree of

siloing, everyone would have to pay attention to everything

all the time, and things would undoubtedly fall between the

cracks. With teams, we create focus and efficiency, even at the

expense of more cross-team collaboration in some situations.

What is a team?

A team is more than a group of people assigned to work with

each other. A viable team has common objectives and a clear

understanding that success at those objectives requires team

By dividing into teams,
an organization can take
on more complex problems
and tasks while effectively
delivering business outcomes.

23

Business Outcomes

members to depend on and trust each other. Everyone on the

team has clear roles and responsibilities without establishing

rigid lines between how different team members contribute.

Team members decide on the team’s goals in a process that

values and considers the input of one another, stakeholders,

and dependent teams; the success of a team is measured

against its goals and objectives.

Teams have team members, typically from disciplines

including software engineering, product design, and product

management, among others. This cross-functional approach

helps foster a sense of ownership and collaboration across the

team rather than different roles that work by handing work off

from one person to another.

Perhaps most importantly, a team should be substan-

tively able to deliver value to the organization using only the

resources of that team. If a group of people can only create

value in partnership with another group, they’re not a team.

Empowered teams are more resilient to organizational change

and allow room for growth and development.

Tradeoffs in team design

There are four key areas to consider when you’re designing

teams within a software organization.

	 1 	� Outcomes. You need to align teams with the company’s

investment priorities and important business metrics,

ensuring that the desired outcomes are being achieved

efficiently.

	 2 	� Features. Every product area needs clear ownership in

the form of a team responsible for its development, bug

fixes, and improvements.

24

Business Outcomes Business Outcomes

	 3 	�� People. Healthy, effective teams include diverse view-

points and skill sets, including those relating to soft-

ware engineering, product management, and design.

	 4 	 �Architecture. Conway’s law reminds us that the user-

facing systems we create tend to mirror the organiza-

tional structure that created them.

When these areas are well-defined, they establish the

boundaries of a team’s ownership and responsibilities.

Creating effective teams involves evaluating tradeoffs in skill

set requirements, dependencies on other teams, optimal team

size, support and coaching needs, standardization, architec-

tural support, and domain complexity. You’ll almost never get

it right the first time, so experimentation will be necessary

before you land on a good mix.

Compromises will be necessary. Having one larger, more

diverse team might be more practical than having two smaller

but deeply interdependent teams (for example, a frontend

team and a backend team). Sometimes it’s not feasible to

include every skill set within a single team, leading to alterna-

tive solutions like formal or informal organizations for certain

skills. Sometimes the deployment target — for example, iOS

— warrants a team all its own.

Sometimes it’s not feasible to
include every skill set within a
single team, leading to alternative
solutions like formal or informal
organizations for certain skills.

25

Business Outcomes

Effective teams tend to include engineers with experi-

ence across the stack. People whose experience with various

aspects of software development — from data to systems

design to frontend, if needed — can accelerate an engineer-

ing effort on multiple levels.

In cases where the codebase is complex and wasn’t

designed to be worked on by independent teams, you might

need to address technical debt or even rearchitect parts of

the system before you can achieve better scalability and team

autonomy.

Different kinds of teams
for different purposes

Developing an engineering organization requires understand-

ing the distinct needs that different types of teams fill and

the order in which to introduce each type of team. Here’s a

focused approach on how to strategically develop these

teams, considering their unique purposes and contributions.

 1 START WITH PRODUCT TEAMS

The initial manifestation of an engineering organization is typ-

ically a single product team. Product teams are fundamental in

owning and managing specific slices of your business domain,

allowing them to operate with a high degree of autonomy and

minimal dependencies.

Product teams make decisions and deliver features that

directly drive business outcomes. This model aligns with rapid

and effective product development, as each team becomes

responsible for a distinct product segment, ensuring focused

and specialized attention to their respective areas.

26

Business Outcomes Business Outcomes

In practice, product teams start by focusing on key business

areas or customer segments. As the organization grows, these

teams expand, diversifying into more specialized units while

maintaining their core focus on their segment of the product.

As an organization evolves, product teams will be the most

common type of team.

 2 INTEGRATE PLATFORM TEAMS

Once you have a few product teams, you’ll often discover that

they act like independent companies. On the one hand, this

is by design; on the other hand, you generally don’t want six

product teams solving essentially the same hard problem in

six different ways.

Some platform needs are common across almost all soft-

ware companies. For example:

•	 CI/CD pipelines to get changes quickly and reliably

to production.

•	 Design systems that make it easier for all frontend

developers to build consistent interfaces.

•	 Scaffolding to deploy new microservices quickly

in the company’s cloud environment, with security

and compliance requirements met and with a good

developer experience.

The idea with platform teams
is that whatever your company
is doing a lot of, it should get
really good at doing.

27

Business Outcomes

However, some platform needs will be very specific to your

company. The idea with platform teams is that whatever your

company is doing a lot of, it should get really good at doing.

These could be things like

•	 Tooling and libraries to visualize data in a data-heavy

product.

•	 Ways to build integrations for an integration-heavy

product, with tools like debugging webhooks and

building authentication flows.

•	 Ways to tackle app performance issues so that teams

can build features with less focus on scalability.

•	 Abstracting away unnecessary details of your

business so that everyone can move faster.

No matter how important an objective is for your company,

you can’t suddenly assign a thousand engineers to work on it

using systems built for 10 engineers and still expect results. To

that end, large tech companies often invest 30-50% of their

engineers in platform teams with the objective of allowing the

rest of the engineers to move faster.

The evolution and eventual roster of platform teams can

vary quite a bit from one organization to another. A single plat-

form team can own many things. Still, eventually, you tend to see

a platform team break into several sub-teams, each focused on

providing a specific type of value to product team engineers.

 3 INTRODUCE SPECIAL TEAMS

As the organization continues to scale, certain areas will

emerge that don’t fit neatly into existing product or platform

28

Business Outcomes Business Outcomes

team structures. This is where you may have to get creative and

design another type of team.

Product teams and platform teams have fairly simple pat-

terns of ownership and communication needs. At some point,

you’ll want to make a tradeoff that doesn’t perfectly fit these

models, and that’s fine — as long as you recognize the tradeoff

you’re making.

A team might specialize in one of these aspects:

•	 Enabling. They could be helping the rest of your

organization with security, recruiting, onboarding, or

any other crucial aspect.

•	 Complex subsystem. Sometimes a system is

important enough to warrant continuous investment

in a team that maintains it

•	 Temporary or project-based. These teams are often

formed to address specific challenges or objectives,

and may be disbanded or reformed as goals are

achieved or priorities change. This could be a big

migration from yesterday’s testing framework to

whatever we do today. Be aware that they might leave

behind code whose ownership is questionable.

•	 Objective-driven. Some teams are defined by spe-

cific objectives they aim to achieve, not by a product

or codebase boundary. This could be a team that’s

focused on cross-cutting customer onboarding

experience. A significant portion of the team’s work

involves collaborating in areas owned by other teams.

This requires them to have strong cross-functional

communication and coordination skills.

29

Business Outcomes

EVOLUTION OF TEAM STRUCTURES

The evolution of team structures in an engineering organi-

zation typically follows a progression from product teams to

platform teams and eventually to special teams, as needed.

This progression aligns with the growing complexity and diver-

sifying needs of the business.

	 1 	 �Product teams. The most common kind of team in an

organization. Your organization’s first team is almost

certainly a product team. Product teams focus on spe-

cific business outcomes and product segments.

	 2 	� Platform teams. These are introduced to provide

overarching support and standardization, enhancing

the efficiency and cohesiveness of product teams.

Typically, an organization has one platform team that

may grow into its own platform organization.

	 3 	�� Special teams. These emerge to address specific,

cross-cutting objectives, filling any gaps in the organi-

zation and contributing to areas that require a broader,

more integrated approach. An organization could have

as few as zero special teams at any given time, depend-

ing on their business needs.

	 Each type of team addresses a distinct need within the

organization, and their sequential introduction aligns with

the natural growth and diversification of the organization’s

responsibilities and objectives.

Tradeoffs in organization design

When you’re deciding how to structure and staff an organiza-

tion, tradeoffs are inevitable. We talked above about how this

30

Business Outcomes Business Outcomes

works at the individual team level, but similar challenges exist

when designing the organization as a whole.

Where you land on these decisions will depend on the

stage of the company and the input of your stakeholders,

among other factors. As you design and evolve your orga-

nization, you’ll do well to ensure that you make intentional

decisions about where you want to land in each of these areas.

•	 Autonomy vs. coordination. Autonomy can foster a

culture of innovation and quick adaptation, allowing

teams to respond rapidly to challenges and opportu-

nities. Excessive autonomy can lead to inconsistent

organizational practices and difficulties integrating

work from different teams. Emphasizing cross-team

coordination ensures that all parts of the organization

are aligned and moving in the same direction. Still, it

has the potential to slow down some decision-making

processes and stifle innovation and ownership at the

team level.

•	 Specialists vs. generalists. Specialists are essen-

tial for tackling complex, niche problems. A team

composed solely of specialists might struggle with

flexibility and cross-functional tasks. In contrast,

generalists can work across various domains, provid-

ing the team with greater versatility, but they may lack

the in-depth knowledge needed for certain tasks.

•	 Centralized vs. distributed decision-making.

Centralized decision-making ensures a unified strate-

gic direction and consistency in processes. However,

it can lead to decision-making bottlenecks and a

disconnection from the on-the-ground realities faced

by teams. Distributed decision-making empowers

31

Business Outcomes

teams, allowing for faster responses and a greater

sense of ownership over outcomes. Yet, without

sufficient coordination, this can lead to a lack of

strategic alignment and varying approaches to similar

problems across the organization.

•	 Short-term delivery vs. long-term sustainability.

Prioritizing short-term delivery can achieve quick

market gains and customer satisfaction, but it may

come at the cost of accumulating technical debt.

Conversely, focusing on the long-term sustainability

of the architecture ensures a robust and scalable

platform but could delay immediate product

deliverables.

•	 New features vs. maintenance. New features keep

the product competitive, but focusing solely on new

development can neglect the necessary improvement

and maintenance of existing features, potentially

impacting reliability and customer satisfaction.

•	 Large vs. small teams. Larger teams can manage a

wider range of tasks and bigger projects but may face

challenges with agility and internal communication.

Small teams, known for their agility and effective

communication, can quickly adapt and innovate

but may be limited in the scale of projects they can

effectively manage.

•	 New tech vs. existing solutions. New technologies

can offer strategic advantages and long-term

benefits, positioning the company at the forefront

of innovation. However, they come with risks and

uncertainties. On the other hand, existing, proven

32

Business Outcomes Business Outcomes

technologies provide stability and predictability but

may lack the advantages of newer solutions. (When in

doubt, choose boring technology.)

The decisions you make here don’t have to be permanent

ones; you’re going to get some things wrong, and decisions

that were correct before will turn wrong over time. Don’t stick

a firm stake in the ground when deciding on these tradeoffs.

Instead, identify where on the spectrum you want to be for

each category and determine how well you’re adhering to that

— and how well it’s serving you — over time.

Antipatterns for organization design

As you think about the different tradeoffs, there are plenty of

antipatterns to avoid. Each of these antipatterns is a choice

that very smart people have made in the past, but we recog-

nize now that each of these choices sets you up for different

kinds of struggles and failures.

•	 Frontend and backend teams. Most customer-facing

features require both frontend and backend work.

Dividing teams along these lines leads to a lack of

collaboration, understanding, and ownership among

different parts of the product development process.

This separation often results in challenges with

integrating the frontend and backend aspects of a

project, typically leading to competing prioritization

decisions by the different teams.

•	 Multiple teams sharing a backlog. Many engineers

working from a single shared backlog can lead

to prioritization issues, reduced ownership, and

decreased clarity on individual contributions. When

33

Business Outcomes

too many people are involved, it becomes challenging

to manage dependencies and coordinate effectively,

leading to bottlenecks and slowdowns. Additionally,

this setup can dilute responsibility and accountability,

as team members may not feel directly connected to

the outcomes of their work.

•	 Too many small teams. While small teams are often

more agile and efficient, over-fragmenting the

engineering organization into too many tiny teams

can lead to problems with coordination, culture,

alignment, and consistency. A new team may need

to be tiny at first, but teams of five to seven software

engineers will be healthier and more sustainable over

the long term.

•	 Delivery teams. These are teams that are solely

responsible for delivering work specified by people

outside the team. Without integrating cross-func-

tional perspectives, they will tend to ship products

that are technically sound but fail to meet user needs

or business objectives.

•	 Lack of clear areas of ownership. When there is

ambiguity about who owns specific parts of the

product or codebase, it can lead to neglect of certain

areas, especially maintenance and quality assur-

ance, creating confusion during decision-making

processes.

Roles and reporting lines

Typically, software engineers report to a line engineering man-

ager. These leaders are familiar with the engineers’ day-to-day

34

Business Outcomes Business Outcomes

work, providing guidance, oversight, and support. In a small or

shallow organization, there could be very few additional layers

between that line manager and the CEO or CTO. In a more

mature or structured environment, more roles start to emerge.

Not every organization will need every role, but these broad

distinctions become fairly typical over time, and each has a

part to play in an organization’s effectiveness effort.

•	 Senior software engineers. They’re usually expected

to take projects from start to finish, alleviating

the team leads or managers from micromanaging

individual projects. This approach allows leaders to

focus more on team dynamics and strategic planning.

Importantly, they rarely work alone; their leadership

comes from being a force multiplier for the team by

guiding and mentoring others. They advise junior

team members, enhance team skills and cohesion,

and play a critical role in maintaining high quality

standards.

•	 Staff+. Staff+ engineers function as leaders within

the larger engineering organization but without direct

people management responsibilities. Their scope

typically extends beyond a single team, setting oper-

ational standards and guiding architecture across a

portion of the group or organization. Staff+ engineers

set operational standards and guide architectural

decisions that ensure scalability and efficiency. They

influence technical strategy, align it with business

goals, and mentor other engineers, elevating the

overall technical skills of the organization. Often,

they report to a manager at a higher level than the

manager of the team they work most closely with.

35

Business Outcomes

•	 Line engineering managers. Successful people in

this role have a strong understanding of software

development, usually through several years of

hands-on experience. They ensure that the team

has what it needs to be successful and coordinate

with other teams in the organization. Through one-

on-ones and other techniques, they use coaching

and performance conversations to support career

progression while often still providing technical

guidance. They may partner with a Staff+ engineer

for technical guidance as well. This role is pivotal in

organizations where individual teams require focused

managerial and technical support, ensuring that

the technical execution and team well-being are

prioritized

•	 Senior managers and directors. Typically, they’re

responsible for several teams, with line engineering

managers reporting to them. As part of managing

their organization, they’re likely responsible for

headcount, budget planning, performance manage-

ment, organization design, cross-team alignment,

higher-level goal setting, inter- and intra-organization

optimizations, and so much more — the role can vary

greatly by company stage and size, and even within

internal organizations. People in this role typically

aren’t hands-on in day-to-day software engineering

work; indeed, a major challenge is to stay connected

to the realities of that work while doing the rest of

the job. They tend to report to senior directors, a vice

president, a head of engineering, or sometimes the

CEO or CTO.

36

Business Outcomes Business Outcomes

•	 VPs and CTOs. VPs tend to be execution-oriented,

while CTOs focus on providing a strategic and

technical vision. Depending on the organization, the

overall engineering vision and strategy usually come

from someone in one of these roles, and the vision

they provide aligns with the company’s long-term

goals. Either of these roles can lead an engineering

organization, make high-level decisions on technol-

ogy and product development, and ensure that the

engineering team scales in line with the company's

growth. Each role is crucial in fostering innovation,

driving technical excellence, and ensuring that

engineering practices contribute effectively to the

company's objectives.

Product roles also have a tremendous influence on an

effectiveness effort. These roles often report separately

from engineering roles, but individual product managers and

product designers are assigned to individual teams.

Teams as a strategic investment

High-performing teams are an exception, not the rule. They

don’t just happen — they require time to form, good leader-

ship to maintain motivation, and clear areas of ownership and

autonomy.

Not long ago — and certainly some companies still do this!

— teams were organized around a set of features that needed

to be built. Team members had input on the technical imple-

mentation but little involvement in defining how the feature

would work, and often sought (and received) little feedback

on whether their work had the desired outcome. The work was

the outcome.

37

Business Outcomes

In contemporary thinking, teams are conceived not just as

functional units executing predetermined tasks but instead as

strategic investments. This shift recognizes teams not as stops

on an assembly line but rather as fun-

damental drivers of business success,

where their focus is on understanding

users, not just on the features or prod-

ucts they develop.

Once again, empowered teams — a

table stake we mentioned in Chapter 1

— are essential to making this work, and

those teams need to be held account-

able for the outcomes they achieve.

Teams that can adapt and respond to new information and

changing conditions will perform best in this scenario.

Investing in teams means more than just providing tasks;

it involves nurturing their growth, capabilities, and cohesion.

This includes:

•	 Skill development. Continuous learning and

development opportunities help teams stay ahead of

the curve, both technically and in terms of industry

knowledge.

•	 Cultivating culture. A strong team culture that

fosters collaboration, innovation, and a sense of

ownership is crucial. The team’s values and norms

should align with those of the larger organization.

•	 Resource allocation. Ensuring teams have the

necessary resources — from tools and technology to

sufficient staffing — is a key aspect of treating the

team as an investment.

High-performing
teams require
time to form, good
leadership to
remain motivated,
and clear areas
of ownership and
autonomy.

38

Business Outcomes Business Outcomes

Again, the team, not the individual, is the fundamental

unit of an engineering organization and a powerful lever for

improving an organization’s effectiveness. Designing an out-

come-oriented organization demands that you consider team

and organization shape, as both influence how effectively work

gets done.

Balancing engineering
investments
In 2020, Matt Eccleston, a former Dropbox VP of Engineering,

spelled out a framework for balancing and budgeting engi-

neering resourcing. Our adaptation of this is what we call

the Balance Framework. The Balance Framework is a model

for understanding the distribution of an engineering orga-

nization’s efforts. It categorizes the organization’s work into

four main areas: 1 new things (creating new features or

services), 2 improving things (enhancing current features,

services, and business processes), 3 keeping the lights on

(KTLO) (maintaining existing systems and services), and
 4 productivity work (making it easier to get work done).

One of the most potent aspects of the Balance Framework

is its ability to create a shared language for people to use

across various organizational roles, such as engineering,

product, and senior leadership. This shared language allows

for improved communication, aligning objectives, prioritizing

work, and tracking progress more efficiently.

Investing in teams means more than just
providing tasks; it involves nurturing
their growth, capabilities, and cohesion.

39

Business Outcomes

LET’S LOOK AT EACH CATEGORY MORE CLOSELY:

1 New things. Developing new features, products, or ser-

vices. This represents innovation, exploring new market

opportunities,	and	expanding	product	off	erings.	

2 Improving things. Enhancing current features, ser-

vices,	tools,	and	business	processes.	This	could	be	

optimizing	a	feature	for	better	user	experience	or	

revamping a service for improved performance.

3 Keeping the lights on. Keeping existing systems run-

ning	eff	ectively	and	eff	 iciently.	This	includes	bug	fi	xes,	

system	maintenance,	and	dealing	with	technical	debt.	

4 Productivity work. Improving skills, optimizing work-

fl	ows,	upgrading	tools,	and	creating	an	environment	

that	allows	the	team	to	work	at	its	best.	

THE BALANCE

FRAMEWORK

Improving things

Customer requests,
performance improvements,
reliability, and usability

Productivity

Developer tooling,
infrastructure improvements
enabling future growth

New things

Work toward your business
objectives with new products,
features, or integrations

Keeping the lights on

Keeping the current product
operational (bugs, troubleshooting,
depency updates, routine tasks)

40

Business Outcomes Business Outcomes

Investing too heavily in any one category can lead to

problems. For example, focusing too much on new things at

the expense of KTLO could result in system instability and

a decreased ability to deliver work due to technical debt.

Conversely, excessive focus on KTLO might result in fewer

new things and improvements, leading to a stagnating product

and missed opportunities for innovation and improvement. A

healthy blend tends to include at least 10% for productivity

work and between 10% and 30% for KTLO work. The remain-

ing time investment will depend on the nature of your business

and your product strategy.

Balancing at the team level

Never forget that a quarter, a half, and a year all have a finite

number of days in them. In a quarter, there are 13 weeks, or

65 working days. When thinking about what a team can get

done, remember that some percentage of that time needs

to be held back for slack time (to address KTLO and reactive

work), vacation time, and holidays. A team of five that starts

with a theoretical 325 available engineering days in a quarter

may end up having as less than half of that time available to

invest in the new things and improving things category.

With that in mind, teams should also be thoughtful

and intentional about how they invest their time in differ-

ent areas, even if the exact breakdown doesn’t match the

A healthy blend tends to include
at least 10% for productivity
work and between 10% and 30%
for KTLO work.

41

Business Outcomes

organization-level investment levels. Setting an investment

balance intention at the team level can help make future deci-

sions more straightforward.

Fostering collaboration
with the Balance Framework

The Balance Framework emphasizes that improving productiv-

ity is a collaborative effort among engineering, product man-

agement, and product design. It creates a shared language

between the diverse roles involved in product development,

from software engineers to the CFO.

It also empowers engineers to advocate for the kind of

productivity work that often goes overlooked and understand

the value of the new things they’re building. A specific alloca-

tion for improvements allows product managers and designers

to make strategic near-term investments that will pay off in

the long run instead of always prioritizing shiny new features.

All this ensures that customer-reported issues are addressed

while fostering a sense of ownership over the product among

engineers, promoting a more engaged team.

Other stakeholders benefit too. Finance can use the

information for forecasting and reporting. Given competing

priorities, sales and marketing can use this information to

understand how much feature development they can expect.

In a smaller organization, conversations around impact

and priorities can happen organically; in a larger one, whole

departments might exist for each role, making communica-

tion more challenging. Having a standard language through

the Balance Framework saves you the pain of unintended

miscommunication and helps you align priorities between

stakeholders.

42

Business Outcomes Business Outcomes

Using the Balance Framework
to improve effectiveness

You can use the Balance Framework to set organizational,

team, or even individual intentions around how time gets

spent, as well as to give business leaders the visibility they

need to determine where engineering effort is going.

With the Balance Framework, you might set a goal for an

organization to reduce its KTLO investment from 40% to 20%

by the end of the year while maintaining or improving quality

metrics. Specific teams can put an additional 20% of their

efforts into productivity by addressing technical debt and

implementing automation. Product (improving things and new

things) will only get 40% investment until the KTLO burden

diminishes; the product team buys faster feature delivery in

the future by accepting slower feature delivery today.

This example highlights essential tensions in software

engineering, mainly because you always have only 100% to

spend. If the team previously spent 0% of their time on the

productivity improvements category, then that 20% has to

come from the other three categories. In this example, prod-

uct work initially got 60% of the organization’s attention;

dropping that to 40% will hurt a bit.

The main challenge of the Balance Framework is that it

requires you to adopt a taxonomy when labeling work across

your engineering processes so that you can associate each

unit of work with a Balance Framework category. The easier

you make it for engineers to label their work, the more likely

you will get trustworthy data. You may want to adjust the exact

classifications — for example, it may be helpful to differentiate

productivity improvement work from feature improvement

work — but try to keep it to just a handful of adjustments.

43

Business Outcomes

Once the data starts to flow, you can also begin to use it to

set team and individual intentions. For example, you can iden-

tify whether one person on your team is doing all the KTLO. If

so, it may become a team or individual priority to spread that

burden more evenly.

What to do when you’re
drowning in KTLO
If you’re dealing with a substantial amount of KTLO work, it’s

a clear sign that something needs to change. KTLO tasks are

those necessary to maintain the existing systems and pro-

cesses, and while they are essential, excessive KTLO can limit

a team’s ability to innovate and deliver new value.

You can employ a few approaches if a team is swamped

with KTLO work.

•	 Prioritize and delegate. Not all KTLO work is

equally important. The team should take time

to evaluate their KTLO tasks and prioritize them

based on their business impact. The low-priority,

non-strategic tasks could be automated, out-

sourced, or temporarily ignored, allowing the team

to focus on higher-impact tasks.

•	 Invest in automation. If a significant proportion

of KTLO tasks are routine and repetitive, the

team could invest in automation. This may

involve using existing tools or developing custom

solutions. Automating repetitive tasks can free

up significant time, allowing the team to focus on

more strategic work.

44

Business Outcomes Business Outcomes

•	 Reduce technical debt. Too much KTLO work

could be the result of substantial technical debt.

For example, a codebase that’s full of one-off

exceptions for individual customers can make any

change risky; this variance should be managed

via configuration, not code. Regularly allocat-

ing time to reduce technical debt — through

refactoring, improving test coverage, updating

documentation, etc. — can reduce the amount of

KTLO work over time.

•	 Reconsider the product roadmap. If KTLO

tasks are hindering progress, it might be time

to revisit the product roadmap. Balancing new

features and improvements against maintenance

tasks is crucial to ensure the team can deliver on

strategic objectives over the long term.

•	 Ask for more resources. If KTLO tasks are

overwhelming and the strategies above aren’t

enough, the team might need more help. This

could mean hiring more team members, reallo-

cating resources from other parts of the organi-

zation, or using third-party service providers.

When you’re inundated with KTLO, it can be tempting to

take shortcuts or make hasty decisions to lighten the load.

Victory will be fleeting if you choose tactics like working longer

hours or taking solely a firefighting approach. Quick “fixes”

often exacerbate the very issues they aim to solve, adding

to technical debt and leading to burnout among software

engineers.

Similarly, prioritizing new features at the expense of

KTLO tasks, or hastily outsourcing these tasks without proper

45

Business Outcomes

oversight, can create more problems down the line. The key

to effectively managing KTLO work isn’t simply to eliminate

KTLO tasks but to approach them strategically, keeping in

mind their impact on long-term product goals and the well-be-

ing of the team.

Setting priorities
Every engineering organization, no matter its size, struggles

with managing competing requests from stakeholders. It’s

common to see an organization trying to decide among very

different types of work. For example, finance wants engineer-

ing to cut cloud spend, product wants

engineering to build things that drive

customer value, and engineering

wants engineering to pay down its

technical debt.

With a poor prioritization strategy

— or none at all — you end up with

multiple competing high-priority

goals. In the above scenario, if you

choose to say yes to all three things, it’s entirely possible that

none of them actually gets done because engineering’s finite

time is split across three major projects when there is only

room for one. Not only is this bad for the business, but it’s also

painful for the engineers who are trying to do all the work.

Quickly, you’ll see signs of:

•	 Priority fatigue/burnout. Engineers will no longer

rally around top priorities even when needed since

everything is a top priority. Instead, they just “do some

work and go home.”

With a poor
prioritization
strategy — or none
at all — you end
up with multiple
competing high-
priority goals.

46

Business Outcomes Business Outcomes

•	 Hiding work. Engineers will start hiding work from

product management or including unnecessary work

in product increments, e.g. “We can't do this one-

week thing unless we spend two weeks refactoring the

whole thing.”

•	 Withholding feedback on priorities. When engineers

feel like prioritization is poor and nothing is changing,

they often stop giving feedback. Leadership will only

see the effects of poor prioritization on teams and

struggle to understand the underlying issues that led

to those effects.

Any one of these things can be poison to an effectiveness

effort — they will make meeting the table stakes mentioned in

Chapter 1 almost impossible.

Setting priorities is more than just ranking a list of tasks in

order of importance. True priorities should highlight the areas

where effort will have the most impact on the organization’s

goals.

When something is a priority, that doesn’t necessarily

mean that every engineer is continually engaged in working

toward that priority. Rather, saying something is a priority

implies a strategic alignment of choices, where team members,

when presented with options, prioritize work that contributes

to these key areas. When priorities are clear, the organization

focuses on strategic outcomes while day-to-day operations

continue without major disruption.

At every level of the business, priorities must be informed

by product and business strategy. While empowered teams

should be setting their own local priorities, these priorities must

be informed by the product and business strategy — and vice

47

Business Outcomes

versa. Effective prioritization requires knowledge and insights

to flow in both directions, so team input should also inform

priorities at the group, organization, and even business levels.

OKRs: A framework
to communicate priorities
Priorities don’t matter much if they’re not communicated

clearly. The Objectives and Key Results (OKR) framework,

described by former Intel leader John Doerr in his book

Measure What Matters, has emerged as a common tool for

communicating priorities across an organization and tracking

progress on those priorities. However, the effectiveness of

this approach varies across different levels of the business

and depends a lot on making sure that the overhead doesn’t

outweigh the benefits.

We like to think of OKRs as a “high-five” standard; if we

accomplish this, will the organization, group, or team have a

moment when they all high-five each other (at least metaphor-

ically)? OKRs should be achievable but ambitious. They should

be based on outcomes, not a list of tasks to be completed or

outputs to be created.

For example, consider a business objective to “hold the

line on churn,” with key results of 95% net revenue retention

across the customer base and 99% retention among the top

100 customers. Just like any good objective, it doesn’t tell

you how to achieve these things — that falls to the teams and

groups across the entire organization. It also doesn’t tell you

who will do the work; efforts toward business-level objectives

will often involve marketing, sales, product, and engineering

(at least).

48

Business Outcomes Business Outcomes

With this in mind, OKRs immediately present the challenge

of managing cross-team and cross-organization work. We’ll

discuss this challenge in more detail below, but at a high level,

what we’ve seen work well is a system where the engineering

organization also has OKRs, and those OKRs closely reflect

company OKRs. Within an engineering organization, each

objective and key result may be owned by a group or team.

So, in the above example, an engineering organization

might set OKRs such as the following.

•	 Objective: Hold the line on churn

•	 �Reach five 9s of API uptime in a running 30-day
window to address frequent user complaints.

•	 �Measure and improve ongoing engagement with
users via messaging apps and emails.

•	 �Support a +20% YoY improvement in net revenue
retention among the top 100 customers.

For some teams in the organization, these OKRs could

directly intersect with their area of ownership, and they

should prioritize their work accordingly. Still, OKRs should

never create an all-hands-on-deck situation; part of using

OKRs responsibly is accepting and explicitly acknowledging

that they will never cover the full scope of work that should

be happening.

A clever senior leader may share a list of OKRs but then

declare, “Security is always our top priority” (or cost cutting,

or KTLO, or something else that didn’t end up on the OKR

list). Sometimes product and engineering will each come up

with separate OKRs. If you have two lists of five top objectives,

49

Business Outcomes

you have 10 top objectives. There must be one short list at the

highest level, and everything on it should be material to the

success of the business. Otherwise, every level below has to

choose who to please and who to offend.

An efficient OKR process is marked by minimal overhead,

with individual teams spending less than a week per quarter

on OKR-related tasks. While the OKR approach does require

aligning with other teams, the alignment process should not

be about crafting a perfectly cascading plan across the orga-

nization but rather about ensuring that there is harmony in

direction and purpose.

As you evaluate OKR progress, watch out for “watermelon

status,” where the outward reporting of progress does not

match the actual data, indicating a disconnect between per-

ception and reality. Keep watch also for objectives that focus

on an output or checklist vs. a specific business outcome.

OKRs must be part of a larger discussion involving invest-

ment balance and organizational design. Imposing an OKR

process on a team that is under-resourced or misaligned

with the company’s broader goals can lead to frustration and

inefficiency. Your goal should be integrating OKRs into the

organizational fabric, ensuring they complement and enhance

the overall strategic direction and resource allocation without

becoming a source of debilitating overhead.

Part of using OKRs responsibly
is accepting and explicitly
acknowledging that they will
never cover the full scope of
work that should be happening.

50

Business Outcomes Business Outcomes

At the business and organization level, OKRs excel in

setting clear directions and establishing priorities. They are

designed to focus on a few crucial objectives, ensuring a

focused effort where it matters most. As discussed above,

the key results associated with these objectives steer clear of

dictating the how, focusing instead on what the achievements

will look like upon completion.

Applying OKRs at the group level brings challenges, par-

ticularly in organizations where trust is low. There’s often a ten-

dency to develop group-level OKRs that cover every team, lest

some teams feel overlooked or undervalued. Furthermore, the

very structure of some organizations can make it challenging

to establish shared objectives that resonate across all teams.

TEAM-LEVEL OKRS

At the team level, OKRs are useful for communicating and

aligning with leadership and other teams, leaving the details

to the team to work out while creating visibility for leaders. Be

careful, though: the practicality of OKRs at the team level can

be outweighed if you’re spending too much time developing

them.

Measurement paralysis is a frequent challenge, as a team

spends time figuring out how to measure the impact of an

issue rather than simply resolving it. Another challenge of

OKRs at the team level is that they need to serve audiences

up, out, and down. Coming up with language that accurately

represents work to the team, its stakeholders, and its man-

agement chain can be (and can create) far more trouble than

it’s worth.

Another shortcoming of OKRs is that the “ambitious but

achievable” standard doesn’t work as well for KTLO work. The

51

Business Outcomes

OKR framework described by Doerr excludes this kind of work,

focusing only on new business objectives. When OKRs focus

only on new work, a team or individual can end up in a situation

where their extremely necessary KTLO work is undervalued.

OKRs also don’t include reactive work — the stuff that

comes up that’s difficult to predict ahead of time. This could

be anything from a security issue in a software library or a pro-

duction incident to a last-minute request from a VP to gather

some data.

Finally, don’t ask teams to create new OKRs every quarter

or on any particular cadence. At the team level, a light and

occasional refresh should be sufficient. Otherwise, team

OKRs often become more like to-do lists than strategic

objectives, providing little value as a communication tool. The

time invested in developing and tracking these OKRs can be

extensive, and the benefits might not always be proportional.

A NOTE ON OKRS FOR PLATFORM TEAMS

Platform groups face a unique scenario when it comes to

OKRs. These groups find OKRs most beneficial when the

group thinks of itself as owning a product rather than just

maintaining a set of services or capabilities.

For more service-oriented teams, OKRs can feel irrele-

vant because much of their work tends to be KTLO-shaped.

Measurement paralysis is a
frequent challenge, as a team
spends time figuring out how to
measure the impact of an issue
rather than simply resolving it.

52

Business Outcomes Business Outcomes

Depending on their nature, platform teams may be a case where

standard OKR practices don’t make much sense. Here and else-

where, in the interest of empowered teams, listen closely to the

team if it struggles to communicate its planned work this way.

Managing cross-team initiatives
One of the hardest prioritization challenges for a software

company is cross-team projects. It’s rarely convenient for

people across teams to suddenly work on the same thing

at the same time, especially if the value of that work to the

team’s users isn’t very clear. It’s imperative to keep people on

the same page about the importance of the project and to

understand project progress across teams.

Successfully and predictably leading complex, cross-cut-

ting initiatives in a software engineering organization requires

timely, accurate, trustworthy data about the work that’s being

done toward completing the initiative. With that knowledge in

hand, you can ensure that progress is made with a reasonable

scope and a reasonable amount of engineering resources.

If things aren’t moving along as quickly as you’d hope,

there are a few common culprits you can look for and address.

•	 Doing too many things at once. When teams try

to handle too many tasks simultaneously, it leads

to interruptions and context switching, drastically

It’s imperative to keep people on the
same page about the importance
of the project and to understand
project progress across teams.

53

Business Outcomes

reducing productivity and focus. Team members

become overwhelmed, leading to a decrease in

work quality and delays in project timelines. Teams

need to prioritize tasks, define specific focus areas,

and implement work-in-progress limits. Advocate

for realistic planning based on the team’s scope

and obligations; leaders should limit the number

of initiatives a team is expected to work on at any

given time.

•	 Working on increments that are too large. Large

increments can extend development cycles,

reducing the team’s ability to adapt to changes

and delaying feedback. This approach can also

overwhelm the team and make it challenging to

track progress. Teams should break down work into

small increments — tasks that can be completed

in one or two days. Smaller increments allow for

quicker feedback, easier adjustments, and clearer

demonstration of progress. Small increments are

also proven to increase overall throughput.

•	 Relying on individuals vs. the team. When an

initiative depends excessively on a single person,

bottlenecks and delays arise when those individu-

als are overloaded or unavailable. This pattern also

undermines team collaboration and knowledge

sharing. Leaders at every level must encourage

a team-oriented approach where knowledge

and responsibilities are shared. Incorporate

cross-training and collaborative work practices to

ensure the team can make progress even when key

individuals are absent.

54

Business Outcomes Business Outcomes

•	 Failing to incorporate new information. When a

team sticks too rigidly to a plan without adapting

to new information or changing circumstances,

you end up with outdated solutions and missed

opportunities. Promote and cultivate a growth

mindset, encouraging teams to revisit and revise

plans as new information becomes available.

•	 Focusing on outputs over outcomes. When

initiatives are evaluated solely on outputs (like the

number of story points or features completed),

it’s easy to lose sight of the actual goals of the

initiative, such as improving user satisfaction or

increasing sales. This misalignment can lead to

inefficiencies and time spent on work that doesn’t

contribute to the objective. Focus instead on the

outcomes the project is trying to achieve. Set clear

(preferably user/customer-centric) goals, and

measure progress toward them to ensure that work

aligns with the project’s desired outcome(s).

•	 Ignoring hidden work and KTLO work. Often,

there’s significant work involved in maintaining

existing systems that goes unnoticed or underes-

timated. Ignoring this aspect can strain resources

and impact the delivery of new projects. Account

for maintenance and operational work when

planning initiatives and adjust your expectations as

needed as the initiative proceeds.

55

Business Outcomes

What’s next?
In this chapter, we emphasized the strategic connection

between software development and business objectives, and

highlighted the Balance Framework as a key tool for managing

resource allocation across near-term and long-term goals. We

also explored the evolution and role of different team types —

product, platform, and special teams — in effectively handling

organizational complexity and driving business outcomes. We

looked at examples of tradeoffs in team design and organi-

zational structure, and tactics for prioritizing and managing

cross-team efforts.

In the next two chapters, we’ll talk about developer pro-

ductivity and developer experience — two sides of the same

coin that are both essential to a successful, sustainable soft-

ware development organization. Business outcomes will suffer

in the long run without investment in both areas.

56

FURTHER READING

Accelerate: The Science of Lean Software and DevOps:

Building and Scaling High Performing Technology

Organizations,	by	Dr. Nicole Forsgren, Jez Humble, and

Gene Kim. A foundational read for understanding the

practices	and	capabilities	that	lead	to	high	performance	in	

software organizations.

Team Topologies: Organizing Business and Technology

Teams for Fast Flow,	by	Matthew Skelton and Manuel Pais.

A practical guide for designing team structures in software

organizations,	aligning	with	the	principles	of	eff	ective	

teamwork and outcome orientation.

Good Strategy Bad Strategy: The Diff erence and Why

It Matters,	by	Richard Rumelt.	An	essential	book	for	

understanding the fundamentals of strategic planning and

execution.

Mindset: The New Psychology of Success,	by	Carol S. Dweck.

Explores	the	concept	of	mindset,	distinguishing	between	a	

fi	xed	mindset	(believing	that	abilities	are	static)	and	a	growth	

mindset	(believing	that	abilities	can	be	developed	through	

hard work and dedication). Dweck argues that adopting a

growth	mindset	leads	to	greater	success	and	fulfi	llment

The Phoenix Project: A Novel about IT, DevOps, and Helping

Your Business Win,	by	Gene Kim, Kevin Behr, and George

Spaff ord.	A	highly	readable	novel	that	provides	insights	

into	DevOps	practices	and	the	importance	of	collaboration	

between	development	and	business.

Business Outcomes

57

Measure What Matters: How Google, Bono, and the Gates

Foundation Rock the World with OKRs,	by	John Doerr. Dig

into the OKR framework with its creator.

The Manager’s Path: A Guide for Tech Leaders Navigating

Growth and Change,	by	Camille Fournier. A practical guide

for engineering leaders, focusing on the challenges of

managing technical teams and projects.

Writing an Engineering Strategy,	by	Will Larson. Larson

writes extensively on engineering leadership, team orga-

nization,	and	technology	management,	providing	valuable	

insights for software development leaders.

lethain.com/eng-strategies/ lethain.com/eng-strategies/

Choose Boring Technology,	by	Dan McKinley. This post

advocates for the careful selection of technology in

business	and	introduces	the	concept	of	innovation	tokens,	

recommending that companies spend these sparingly and

only	on	technologies	that	provide	a	signifi	cant	advantage.	

mcfunley.com/choose-boring-technologymcfunley.com/choose-boring-technology

A Framework for Balancing and Budgeting Engineering

Resourcing,	by	Matt Eccleston. Discusses the importance

of	balancing	diff	erent	types	of	engineering	investments	to	

ensure	long-term	success	and	sustainability.	

medium.com/engineering-operations/a-frame-medium.com/engineering-operations/a-frame-

work-for-balancing-and-budgeting-engineering-resourc-work-for-balancing-and-budgeting-engineering-resourc-

ing-d0cce0e6911cing-d0cce0e6911c

Business Outcomes

Developer Productivity

Developer
Productivity

Build: Elements of an Effective

Software Organization

.
Effective software organizations

make fast and consistent progress
toward their goals.

59

Developer Productivity

T
he unfortunate reality about complexity

in software is that if you just continue

doing what you’ve always been doing,

you’ll keep slowing down. When starting

a fresh project, you’ll be surprised by

how much you can accomplish in a day or

two. In some other, more established environments, you could

spend a week trying to get a new database column added.

Many things that slow down work are systemic, not individ-

ual. Even the most talented engineer might not fully under-

stand how much time is wasted when work is bounced between

teams, half-completed features are shelved as priorities

change, or all the code gets reviewed by just one person. It’s

easy to think you’re solving a quality problem by introducing

code freezes and release approvals, but you might only be

making things worse.

In this chapter, we’ll talk about some of the perils of

measuring productivity before we move on to the mechan-

ics of making it happen in a way that’s perceived as broadly

beneficial.

But first, let’s talk about the biggest question of all: what is

productivity, anyway?

Defining developer productivity
If you ask a group of seasoned engineering leaders to define

developer productivity, there will typically be no unified

answer. For the purposes of this book, we consider developer

productivity in the context of how organizations can minimize

the time and effort required in the software delivery process to

create valuable business outcomes. We will focus primarily on

60

Developer Productivity Developer Productivity

team- or service-level delivery and eliminating bottlenecks —

often process bottlenecks — in the software delivery process.

We’ll also center our conversation on aggregate produc-

tivity instead of the efforts and contributions of individuals.

A healthy productivity effort may involve automating more

parts of the team’s deployment process, addressing flaky tests

that cause failing builds, or just getting a team to commit to

reviewing open pull requests before starting on their own work.

A healthy productivity effort should not, on the other hand,

require a certain number of pull requests for each engineer

every week. That approach is unlikely to create business value

and very likely to create a toxic environment.

Productivity table stakes

Just as we discussed organizational table stakes in the first

chapter — empowered teams, rapid feedback, and outcomes

over output — there are three clear ways of working that you’ll

see on any highly productive team.

	 1 	� Limited queue depth. Controlling the number of

tasks waiting to be processed (also known as a back-

log) reduces lead times, improves predictability, and

smooths the flow of work, thereby increasing efficiency

and reducing the risk of bottlenecks.

A healthy productivity effort
should not require a certain
number of pull requests for each
engineer every week.

61

Developer Productivity

	 2 	� Small batch sizes. Smaller batches of work are pro-

cessed more quickly and with less variability, leading

to faster feedback and reduced risk. This approach

enhances learning and allows for more rapid adjust-

ments to the product.

	 3 	� Limited work-in-progress (WIP). By restricting the

number of tasks in progress at any given time, teams

can focus better, reduce context switching, and accel-

erate the completion of tasks, thus improving overall

throughput.

LIMITED QUEUE DEPTH

It’s okay to admit it: we’ve all added a task to a backlog with a

vague certainty that it will never get done.

Limiting queue depth means rigorously monitoring and

managing the number of tasks awaiting work. This involves

implementing systems to track and control the queue size,

such as using a Kanban board to visualize work and enforce

limits on the number of items in each stage. This principle also

means you can’t let backlogs grow unchecked, as this can lead

to delays, rushed work, and increased stress.

Regularly review your work queues and adjust priorities

to ensure that valuable and time-sensitive tasks are getting

addressed promptly. When you encourage teams to complete

current tasks before taking on new ones and use metrics

like cycle time to identify bottlenecks, you can significantly

enhance the flow and efficiency of the development process.

Implementing this in practice usually means limiting the

number of tasks awaiting development, review, or deployment

at any given time. In addition to providing clarity about what

62

Developer Productivity Developer Productivity

to work on next, this practice also dramatically improves the

predictability of delivery once something reaches that initial

awaiting development status.

SMALL BATCH SIZES

Breaking down large projects into smaller, more manageable

parts allows for quicker completion of each part, enabling

faster feedback and iterative improvements. For instance,

deploying completed tasks incrementally rather than releas-

ing a large set at once makes it easier to release more tasks in

a given period of time; regressions will tend to be small, readily

attributed, and readily fixed without blocking other tasks.

Large batches often complicate integration and make it

difficult to track down problems. A continuous delivery model,

where small updates are released whenever they’re ready, is

a practical application of this principle. Encourage teams to

think in terms of small changes, which helps in managing risk

and improving the ability to adapt to new information.

LIMITED WIP

When you introduce and regularly monitor WIP limits, you

ensure that teams focus on completing ongoing tasks before

starting new ones. Overloading team members with multiple

tasks leads to reduced focus and increased cycle times. A

culture where teams are encouraged to complete current

work before embarking on new tasks improves focus, reduces

waste, and speeds up work delivery.

The Kanban process embraces this explicitly, although

you don’t need to use Kanban to follow this principle. In

that process, the team always focuses on completing the

63

Developer Productivity

team’s in-flight tasks before starting new ones — a process

sometimes called “walking the board from right to left” — to

encourage teammates to help each other before starting a

new task. Similarly, scrum limits the number of story points in

an individual sprint.

In the absence of WIP limits, a team can quickly start to

juggle more than it can reasonably handle, and it’s common

for tasks to remain in progress for an extended period even

though they aren’t being actively worked upon.

Productivity vs. quality

A common misconception is that productivity and quality are

in tension. If your version of quality is to manually test every

change you make and test your whole product before releasing

it, there will naturally be tension between the two. Any scenario

that relies heavily on manual testing often leads to the creation

of more processes — like a definition-of-done checklist on

every pull request — further delaying time to value.

Fascinatingly, one of the best ways to achieve developer

productivity involves improving the quality of your product

through automated testing. If you’re doing productivity right,

quality will tend to increase over time, as it becomes easier to

ship smaller changes and easier to roll back or disable features.

A culture where teams are
encouraged to complete current
work before embarking on new
tasks improves focus, reduces
waste, and speeds up work delivery.

64

Developer Productivity Developer Productivity

Broadly, this involves four things.

•	 Make it easy to write tests. Most programming lan-

guages have somewhat standard testing frameworks,

and many software frameworks also come with clear

patterns for testing. Educate your engineers on how

to use these testing tools, making setup easy.

•	 Make it easy to get the right data. Tests shouldn’t

be talking to production to get data, but they need

data that’s a realistic simulation of the kind you’d see

in production. If you ask individual engineers to solve

the data problem independently, their approaches

will be varied and surprising (and often quite bad).

•	 Make it easy to manually test. While you want to

limit the amount of manual testing we’re doing,

there are lots of situations during the development

of a feature where you’d like to be able to kick the

tires and see how it works — for example, to show

something to a product partner or another developer

working remotely. Make it easy to interact with code

that’s on a feature branch.

•	 Make it easy to release (and roll back) small

changes. One of the reasons teams get in a position

of doing a ton of pre-release manual testing is that

the release process itself is so onerous — and the

rollback process is worse. Individual tasks stack up

so that a release includes dozens of changes and

tens of thousands of lines of code. When you make

it trivial to release small changes, engineers will start

making smaller changes, leading to vastly less risk for

any given release.

65

Developer Productivity

If you’ve put these pieces in place — which can be harder

than it sounds — you’ve given your engineers powerful tools

that make their job easier, and you’ve also taken a big step

toward a better product. Add a ratchet to CI to make sure test

coverage of your code only goes up, and incentivize writing

tests and sharing strategies within and across teams.

Once again, team structure (as discussed in Chapter 2)

comes into play. Establishing a culture of (automated) quality

requires that your teams have sufficient domain knowledge in

testing methods for the language or framework being used.

Emphasizing automated testing also encourages you to limit

the complexity any single team has to deal with, so you in turn

limit the surfaces they need to test.

Frameworks for thinking
about productivity

There are a couple of frameworks that can be useful when

considering the broad topic of productivity.

The DevOps Research and Assessment (DORA) frame-

work has become a standard in the productivity realm for a

reason: it offers a set of valuable metrics that shed light on

where engineering teams might be able to improve their soft-

ware delivery. By providing a baseline that captures a team’s

current state, DORA sets the benchmark for your team’s pro-

cesses. The aim isn’t to become obsessed with numbers but

to continually evaluate whether you’re satisfied with what the

numbers are telling you.

The success of the DORA framework — which originated

from work by Nicole Forsgren, Jez Humble, and Gene Kim

— lies in its simplicity and ability to capture various aspects

of software development through its four core metrics:

66

Developer Productivity Developer Productivity

 1 lead time for changes, 2 deployment frequency, 3 time

to restore service, and 4 change failure rate. These metrics

are in healthy tension with each other, which means improving

one could unintentionally lead to the degradation of another.

Of course, there are limitations to the DORA metrics.

While they offer a snapshot of your team’s performance, they

don’t explain why something might be off. Nor do they tell you

how to improve. The DORA framework is not a diagnostic tool;

it doesn’t point out bottlenecks in your processes or identify

cultural issues inhibiting your team’s effectiveness. It’s much

like having a compass — it will tell you what direction you’re

headed in, but not what obstacles lie in the way or how to nav-

igate around them.

The SPACE framework, developed by Forsgren along

with Margaret-Anne Storey, Chandra Maddila, Thomas

Zimmerman, Brian Houck, and Jenna Butler, grew out of

an attempt to create a more comprehensive tool to capture

the complex and interrelated aspects of software delivery

and operations. The goal was to create a model that would

acknowledge the competing tensions within software devel-

opment and use those tensions as catalysts for improvement.

Unlike DORA, SPACE embraces quantitative and quali-

tative metrics, identifying five critical dimensions of software

delivery and operational performance. The acronym stands

Unlike DORA, SPACE embraces
quantitative and qualitative
metrics, identifying five critical
dimensions of software delivery
and operational performance.

67

Developer Productivity

for satisfaction, performance, activity, communication and

collaboration, and efficiency and flow.

	 S 	� Satisfaction is how fulfilled and satisfied engineers

feel about their work, team, tools, and culture. It also

involves evaluating how that sentiment affects their

engagement and fulfillment based on the work they do.

	 P 	� Performance evaluates whether the output of the engi-

neering organization has the desired outcome relative

to the investment. For example, what is the ROI of add-

ing 20 engineers to an organization? This is notoriously

difficult to measure in a concrete way when it comes to

software engineering, meaning it’s more of a theoretical

concept than a roadmap to specific metrics.

	  A 	� Activity is a count of actions or outputs completed

while performing work. These include outputs like

design documents and actions like incident mitiga-

tion, as well as commits, pull requests, and code review

comments.

	  C 	� Communication & collaboration captures how people

and teams communicate and work together.

	  E 	� Efficiency & flow captures the ability to complete work

or make progress on it with minimal interruptions or

delays, whether individually or through a system.

SPACE offers a comprehensive (though fuzzy) approach to

improving productivity. It acknowledges the interplay between

different aspects of software development and provides a bal-

anced and holistic model for assessment and improvement.

Still, it is just a framework — it doesn’t offer any specifics about

what exactly to measure or what “good” should look like.

68

Developer Productivity Developer Productivity

A set of universal metrics can’t fully capture the effective-

ness of your organization because organizations vary in size,

age, and culture. A mature, larger organization may have very

different challenges and therefore different areas to focus on

for improvement compared to a smaller, newer organization.

This means that while DORA metrics are incredibly useful,

they must be complemented by other qualitative assessments,

leadership insights, and perhaps more localized metrics that

take into account the unique characteristics of specific teams.

Unfortunately, there is no definition of productivity that

boils down to keeping an eye on a few simple metrics. Measuring

productivity is actually pretty hard.

Measuring productivity
Engineering organizations measure developer productivity

to eliminate bottlenecks and make data-informed decisions

PRODUCTIVITY

S

P

A

C

E

Satisfaction

Performance

Activity

Communication & collaboration

Efficiency & flow

THE SPACE FRAMEWORK

69

Developer Productivity

about resource allocation and business objective alignment.

Assessing productivity also provides insights into project pre-

dictability, which aids in planning and forecasting. This data

acts as an early warning system to recognize when teams are

overburdened, allowing for proactive interventions to alleviate

stressors and redistribute workloads.

Even when the intent of measuring productivity is to

improve team and organizational effectiveness, individual

engineers can still be concerned that the data will be used

against them. There’s a pervasive worry that these metrics

could translate into some form of individual performance

review, even when that’s not the intended use. This concern

can contribute to a culture of apprehension, where engineers

might be less willing to take risks, innovate, or openly discuss

challenges. Any perception that the data will be weaponized for

performance purposes can doom an effectiveness effort. Say

that you won’t use the data to target individuals and mean it.

Transparency in communicating the intent, scope, and

limitations of productivity metrics can go a long way in assuag-

ing these concerns. The metrics themselves likewise need

to be transparent. By involving engineers in the process of

deciding what to measure, how to measure it, and how the data

will be used, you can mitigate fears and build a more coopera-

tive culture focused on continuous improvement rather than

punitive action.

Even when the intent of measuring
productivity is to improve team and
organizational effectiveness, individual
engineers can still be concerned that
the data will be used against them.

70

Developer Productivity Developer Productivity

Despite these risks, measuring productivity can foster

healthy conversations about organizational improvement.

Metrics can highlight inefficiencies or bottlenecks and open

the door to constructive dialogue about how to solve these

problems. This becomes especially necessary as a business

grows and alignment between engineering objectives and

broader business goals becomes more challenging. Software

delivery metrics offer a standardized way to communicate the

department’s status to other organizational stakeholders.

Choose your metrics carefully. Besides the risk of impact-

ing the psychological safety of your engineers, there are other

pitfalls to be aware of. Don’t rely on misleading or irrelevant

metrics that provide a distorted view of what’s happening

within the teams (for example, pull requests per engineer or

lines of code committed). Poorly chosen metrics can lead to

misguided decisions and even undermine the credibility of the

whole measurement process.

Consider, too, the incentives that are created when you

choose metrics. Overemphasizing activity-focused numbers

might lead engineers to game the system in a way that boosts

activity metrics but doesn’t genuinely improve their produc-

tivity or the value created by their work. This can result in a

culture where superficial metrics are prized over substantive

improvements, leading to technical debt and inefficiencies.

On the other hand, if your metrics encourage engineers to

submit more but smaller pull requests, you’re likely to see

benefits in quality and speed of delivery.

Cycle time

The work of delivering code changes for individual tasks is

often measured in terms of cycle time. This term comes from

71

Developer Productivity

manufacturing processes, where cycle time is the time it takes

to produce a unit of product and lead time is the time it takes

to fulfill a delivery request.

In software development, these terms are often mixed. For

most features, it might not be reasonable to track the full lead

time of a feature, as in the time from a customer requesting

a feature to its delivery. Assuming the team is working on a

product that’s supposed to serve many customers, it’s unre-

alistic to expect features to be shipped as soon as the team

hears the idea.

Although we’re reusing manufacturing terms, remember

that there is no unit of product in software development. A

car can only be sold by the manufacturer once. The work that

happens in an engineering organization can be sold over and

over again, with near-zero marginal cost for each additional

sale of the exact same code.

When talking about cycle time for code, we’re talking

about the time it takes for code to reach production through

development, reviews, and other process steps. Cycle time is

the most important flow metric because it indicates how well

your engine is running. When diagnosing a high cycle time,

your team might have a conversation about topics like this:

•	 What other things are we working on? Start by

visualizing all the work in progress. Be aware that your

issue tracker might not tell the whole truth because

development teams typically work on all kinds of ad

hoc tasks.

•	 How do we split our work? It’s generally a good idea

to ship in small increments. This might be more diffi-

cult if you can’t use feature flags to gradually roll out

features to customers. Lack of infrastructure often

72

Developer Productivity Developer Productivity

leads to a bad branching strategy, with long-lived

branches and additional coordination overhead.

•	 What does our automated testing setup look like? Is

it easy to write and run tests? Can you trust the results

from the continuous integration (CI) server?

•	 How do we review code? Is only one person in the

team responsible for code reviews? Do you need to

request reviews from an outside technology expert?

Is it clear who’s supposed to review code? Do we as a

team value that work, or is someone pushing us to get

back to coding?

•	 How well do team members know the codebase?

If all the software was built by someone who left the

company a while ago, chances are that development

will be slow for a while.

•	 Is there a separate testing/quality assurance stage?

Is testing happening close to the development team,

or is the work handed off to someone on the outside?

•	 How often do we deploy to production/release

our software? If test coverage is low, you might not

feel like deploying on Fridays, or if deployment is

not automated, you won’t do it after every change.

Deploying less frequently increases the batch size of

a deployment, adding more risk and again reducing

frequency.

•	 How much time is spent on tasks beyond writing

code? Engineers need focus time; getting back to

code on a 30-minute break between meetings is

difficult.

73

Developer Productivity

There are perfectly good reasons for cycle time to fluc-

tuate, and simply optimizing for a lower cycle time would be

harmful. However, when used responsibly, it can be a great

discussion starter. Even better, consider tools that help visu-

alize how this number moves over time, leading to a deeper

understanding of trends and causes.

Issue cycle time captures how long your epics, stories, and

tasks (or however you plan your work) are in progress. Each

team splits work differently, so they’re not directly compara-

ble. If you end up creating customer value, it probably doesn’t

matter whether that happens in five tasks taking four hours

each or four tasks taking five hours each.

Things don’t always go smoothly. When you expected

something to take three days and it took four weeks of grind-

ing, your team most likely missed an opportunity to adjust

plans together. When you find yourself in this type of situation,

here are some questions to ask.

•	 What other things are we working on? Chances are

that your team delivered something, just not this

feature. Visualizing work and limiting work in progress

is a common cure.

•	 How many people worked on this? Gravitating

toward solo projects might feel like it eliminates the

communication overhead and helps move things

faster, but this is only true from an individual’s

perspective, not the whole team’s.

•	 Are we good at sharing work? Splitting work is both

a personal skill and an organizational capability.

Engineers will argue it’s difficult to do. Nevertheless,

do more of it, not less.

74

Developer Productivity Developer Productivity

•	 How accurate were our plans? Suppose the scope of

the feature increased by 200% during development.

In that case, it’s possible that you didn’t understand

the customer use cases, got surprised by the techni-

cal implementation, or simply discovered some nasty

corner cases on the way.

•	 Was it possible to split this feature into smaller but

still functional slices? Product management, product

design, and engineers must work together to find a

smart way to create the smallest possible end-to-end

implementations. This is always difficult.

It feels great to work with a team that consistently deliv-

ers value to customers; that’s what you get by improving issue

cycle time.

Deployment frequency

Depending on the type of software you’re building, “deploy-

ment” or “release” might mean different things. For a mobile

app with an extensive QA process, getting to a two-week

release cadence is already a good

target, while the best teams building

web backends deploy to production

whenever a change is ready.

Deployment frequency serves as

both a throughput and a quality met-

ric. When a team is afraid to deploy,

they’ll do so less frequently. When

they deploy less frequently, bigger deployment batches

increase risk. Solving the problem typically requires building

more infrastructure. Here are some of the main considerations:

Deployment
frequency
serves as both a
throughput and
a quality metric.

75

Developer Productivity

•	 If the build passes, can we feel good about

deploying to production? If not, you’ll likely want to

start building tests from the top of the pyramid to

test for significant regressions, build the infrastruc-

ture for writing good tests, and ensure the team

keeps writing tests for all new code. Whether tests

get written cannot be dictated by outside stake-

holders; this needs to be owned by the team.

•	 If the build fails, do we know if it failed randomly

or because of flaky tests? You need to understand

which tests are causing most of your headaches

so that you can focus efforts on improving the

situation.

•	 Is the deployment pipeline to production

fully automated? If not, it’s a good idea to keep

automating it one step at a time. CI/CD pipeline

investments start to pay off almost immediately.

•	 Do we understand what happens in production

after deployment? Building observability and

alerting takes time. If you have a good baseline

setup, it’s easy to keep adding these along with your

regular development tasks. If you have nothing set

up, it will never feel like it’s the right time to add

observability.

•	 Are engineers educated on the production

infrastructure? Some engineers have never

needed to touch a production environment. If

it’s not part of their onboarding, few people are

courageous enough to start making improvements

independently.

76

Developer Productivity Developer Productivity

Some measures to avoid

Historically, agile teams have tracked velocity or story points.

Originally meant as a way to help teams get better at splitting

work and shipping value, these units have been abused ever

since as a way to directly compare teams and steer an organi-

zation toward output-based thinking.

If talking about story points helps you be more disciplined

about limiting queue depth and WIP, go for it. If not, don’t feel

bad about dropping story points as long as you understand

your cycle times.

Another traditional management pitfall is to focus on

utilization, thinking that you want your engineers to be 100%

occupied. As utilization approaches 100%, cycle times shoot

up and teams slow down. You’ll also lose the ability to handle

any reactive work that comes along without causing major

disruptions to your other plans.

There’s a time and place to look at metrics around indi-

vidual engineers. In very healthy environments, they can be

used to improve the quality of coaching conversations while

understanding the shortcomings of these measures. In a big-

ger organization, an effort to focus on individual metrics will

likely derail your good intentions around data-driven contin-

uous improvement. Engineers will rightfully point out how the

number of daily commits doesn’t tell you anything about how

good they are at their jobs.

The number of daily commits doesn’t
tell you anything about how good
engineers are at their jobs.

77

Developer Productivity

On the other hand, opportunities abound at the team

level without shining a spotlight on any individual. Start your

conversations there instead.

Classic productivity challenges
Assessing productivity challenges in software engineering

teams requires looking beyond output metrics. Consider these

potential culprits when trying to debug a productivity issue:

•	 Insufficient collaboration. Collaboration among team

members is essential to improve issue cycle time.

Collaboration allows for more effective planning and

prioritization, reducing multitasking and aligning the

team on common goals. Individual efforts may seem

efficient in the short term, but they lack the collective

intelligence and shared context that comes from

teamwork.

•	Siloing. To find gaps in collaboration, observe your

issue tracker to see if projects are often completed by

single contributors. A lack of multiple contributors on

larger issues indicates a problem. Preventing siloing

may involve setting team agreements and ensuring

that tasks are broken down sufficiently for multiple

people to work on.

•	Multitasking. Taking on too many tasks simultaneously

slows progress and creates waste. Track open stories,

tasks, and epics against the number of engineers

to gauge if there's an overload. Listen to the team’s

qualitative feedback on how they feel about their

WIP levels. Introduce WIP limits to align everyone on

completing existing tasks before starting new ones.

78

Developer Productivity Developer Productivity

•	Large increments. If projects often overrun, is the

team trying to tackle overly large problems? Examine

the time it takes to complete issues and look for scope

creep to indicate planning deficiencies.

•	Planning quality. When scope creep is common,

consider it in future planning. You can also scrutinize

long-running tasks to understand if they could have

been broken down into smaller, more manageable

parts, aiding in better planning for future issues.

•	Cross-team sequencing. Even in the best-designed

organizations, it’s sometimes necessary for two teams

to work together to deliver customer value. Without

care and attention, these partnerships can struggle to

stay coordinated and deliver the right thing at the right

time for the other team to make progress.

It’s worth mentioning that scope creep isn’t necessarily a

bad thing! Mitigating its effects should be focused on building

in time for learning, feedback, and discovery; reducing scope

creep via extensive up-front planning and specification rarely

produces good results.

Setting goals around productivity
If you’re just starting out on your productivity journey, goal-

setting can feel intimidating, especially if you’re trying to

prove the value of investing in this area. It can be tempting to

go straight to frameworks like DORA and SPACE and try to

set goals around those concepts. Still, you’ll have more luck if

you identify a single opportunity from your conversations with

engineers and execute on it (we’ll talk more about this in the

final chapter).

79

Developer Productivity

For example, if you learn that CI builds fail 20% of the

time due to seemingly random environmental issues, that’s a

concrete data point to measure and set a target around. Once

you hit the target, you can ensure you’ll notice if you exceed it

again. Rinse and repeat the process with different metrics for

different kinds of improvements.

Once you’ve embraced that pattern, it’s a good time to get

DORA metrics in place if you haven’t already and start using

them to track the impact of improvements on teams and ser-

vices. In many ways, the core DORA metrics cover the activity

pillar in SPACE, and establishing them within your organization

will quickly highlight potential opportunities.

As your productivity journey progresses, DORA metrics will

continue to be useful for tracking trends, but they will never tell

your whole productivity story. As you start to recognize themes

in your work and your users’ reported issues, embracing SPACE

more thoroughly beyond the activity dimension will make

sense. The SPACE framework is best used to identify various

indicators of overall productivity, from OKR/goal attainment to

meeting load to cross-team collaboration burden.

Setting goals around SPACE pillars is also fraught; there’s

no way, for example, to boil efficiency and flow down to a single

number. On the other hand, SPACE is great as a framework to

classify problems and brainstorm specific metrics you might

use to track trends and validate improvements.

Even under pressure, set goals
around potential valuable outcomes
from working on the problem, not on
a restatement of the problem itself.

80

Developer Productivity Developer Productivity

When it comes to setting metrics goals, you’ll sometimes

find yourself pressured to set a goal before you know how you’re

going to solve the fundamental problem. Even under pressure,

set goals around potential valuable outcomes from working on

the problem, not on a restatement of the problem itself.

Tools and tactics
Opportunities to improve flow exist throughout the report-

ing chain and sometimes straight up to senior leadership.

Culturally, you need to get people at all levels to understand

and internalize the idea that interruptions for software engi-

neers are bad and should be minimized.

Of course, some interruptions are inevitable, but many

are imposed without recognizing the cost. Before you do any-

thing else with developer productivity, ensure there’s general

agreement on reducing interruptions (we’ll discuss this in more

detail in the next chapter).

At the team level, some interruptions are within the team’s

control and some are not. For example, suppose a code

change requires a review from another team. In that case, the

originating engineer is interrupted in their task until a person

from the other team accepts the change, and the originating

team may not feel in control of the situation in the meantime.

Nonetheless, plenty is in the control of individual teams:

what they prioritize, how they work

together, how they ensure quality,

how they automate tedious tasks,

and much more. Working agree-

ments and retrospectives are two

tools to use at the team level.

Some interruptions
are inevitable, but
many are imposed
without recognizing
the cost.

81

Developer Productivity

•	 Working agreements. Team members agree on how

they want to work. For example, team members could

agree that they will release code at least once a day

and that reviews should be completed within two

hours of the assignment. By setting and monitoring

these agreements, the team can recognize where

they’re falling short and identify resolutions that

could be technical or process-focused.

•	 Retrospectives. Team members assess the work of

the previous period, how they worked together, and

how well they upheld the working agreements. They

then propose ideas and accept action items for future

iterations.

At the organizational level, we start to talk about more

ambient interruptions, which no one is responsible for but just

seem to appear. Tackling these interruptions is outside the

scope of any one team unless a team is specifically responsible

for this kind of thing. This is where things get more challenging

but also more rewarding; solving these cross-team problems

tends to have more leverage than focusing solely on team-

level opportunities.

Working agreement

Feedback loop

Limit pull requests
in progress

When more than 5 pull requests are in progress at
once, Platform Team gets a notification in #platform

5 pull requests Set target
SUGGESTED CUSTOM

AN EXAMPLE WORKING AGREEMENT

82

Developer ProductivityDeveloper Productivity

Once you reach a certain size, it’s useful to be explicit

about who is accountable for developer productivity and what

it’s like to build software at your company. If your immediate

response is “everyone,” either you are still a relatively small

organization or it’s time to start thinking about a more defin-

itive answer.

What’s next?
In this chapter, we discussed developer productivity, includ-

ing ways to quantify it and guidance on goal-setting in the

developer productivity space. Next, we’ll talk about the less

quantifiable but equally important developer experience.

Developer ProductivityDeveloper Productivity

83

FURTHER READING

The Principles of Product Development Flow: Second

Generation Lean Product Development,	by	Donald G.

Reinertsen. A comprehensive guide on applying lean

principles to software and product development, enhancing

productivity	and	eff	 iciency.

The DevOps Handbook: How to Create World-Class Agility,

Reliability,	and	Security	in	Technology	Organizations,	by	

Gene Kim, Patrick Debois, John Willis, and Jez Humble.

Explains DevOps principles and practices, emphasizing

collaboration	and	productivity	in	software	development.

Making Work Visible: Exposing Time Theft to Optimize Work

& Flow,	by	Dominica DeGrandis. Focuses on the importance

of	making	work	visible	to	improve	productivity	and	eff	 iciency	

in software development.

The Mythical Man-Month: Essays on Software Engineering,

by	Frederick P. Brooks Jr.	A	classic	book	in	software	

engineering that discusses the challenges and pitfalls of

managing complex software projects.

The SPACE of Developer Productivity,	by	Nicole Forsgren et

al.	The	white	paper	that	describes	the	SPACE	framework	and	

the multidimensional nature of “productivity.”

queue.acm.org/detail.cfm?id=3454124queue.acm.org/detail.cfm?id=3454124

84

Developer Experience Developer Experience

4.
Developer
Experience

Effective software organizations
give engineers the support and tools

they need to feel engaged.

Build: Elements of an Effective

Software Organization

85

Developer Experience

I
n the previous chapter, we discussed how pro-

cesses impact developer productivity and how

we might measure it. Here, we look at the other

side of software development: developer expe-

rience. We’ll revisit the table stakes we discussed

in previous chapters and explore the aspects of

experience that we can measure and set goals around.

Measuring developer experience
Developer experience metrics are more qualitative than the

metrics we saw in Chapter 3. For example, it’s table stakes to

capture employee satisfaction and engagement data. Still,

you’d be hard-pressed to suggest that this is quantitative data;

the small number of data points makes the error bars quite wide.

Suppose you want to understand how developer experi-

ence affects your team’s effectiveness. In that case, you need

to evaluate how employees feel about their work and other

factors contributing to overall job satisfaction, examining the

following points:

•	 Sources of frustration. Software engineers get

frustrated when their flow is interrupted — sometimes

by a tool, sometimes by a process, and sometimes by

another human. These frustrations add up, impacting

the engineer’s sense of satisfaction at getting things

done while also working against timely delivery.

Consider making it easy and obvious to report engineer

frustrations to a ticket queue that you check regularly.

•	 Employee satisfaction and engagement. This

measures how content and committed employees are.

Regular employee surveys can help capture this data.

86

Developer Experience Developer Experience

Additionally, exit interviews and employee reviews

on job websites can offer insightful perspectives on

employee satisfaction and engagement.

•	 Employee turnover and regretted attrition. Employee

turnover refers to the rate at which employees leave an

organization. A high turnover rate, especially among

high-performing or recently hired individuals, could

indicate underlying organizational issues. An increase

in regretted attrition — the loss of employees that

the organization would have preferred to retain — is a

warning sign of poor organizational health.

•	 Leadership trust and communication effectiveness.

Leadership and organizational communication

effectiveness can significantly impact employee satis-

faction. Regular surveys can gauge employees’ trust in

leadership and the effectiveness of organization-wide

communications, providing insight into potential areas

for improvement in leadership and communication

strategies.

Note that a couple of downsides plague each of these

metrics: the data arrives long after the damage is done, and

the data is noisy and nuanced.

Identifying improvements
The people whose productivity you are trying to improve are

the best source of information about what needs improving.

You can better understand their needs by approaching this on

two fronts: talking to the users of your internal development

systems and collecting data about tool behavior as engineers

go about their day.

87

Developer Experience

Review the table stakes

We discussed organization-wide table stakes in Chapter 1

(empowered teams, rapid feedback, and outcomes over out-

puts), and we discussed team-specific table stakes in Chapter

3 (limited queue depth, small batch sizes, limited work in

progress).

All of these come into play in developer experience. The

absence of any one of these is known to reduce a software

engineer’s satisfaction and engagement with the job.

As a leader, you need to honestly evaluate where your team

and/or organization stands regarding this must-have list. If any

of these ways of working are missing or on shaky ground, you

(and your leadership) must acknowledge that there’s a ceiling

on the improvements you can make until that changes.

Talk to your users

The phrase “talk to your users” may be unexpected here, but

it’s a surprisingly helpful framing. Your engineering colleagues

are your users, and your product is effectiveness. As with the

real-world users of your company’s product, talking to your

internal users can be a source of powerful insights. This can

take a few forms.

Have as many in-person conversations with small groups

of engineers — including both veterans and new hires, product

and platform teams — as you can manage. You could do this

via a survey, but have at least some of these conversations in

person with a few teams; that environment tends to generate

usefully divergent ideas.

88

Developer Experience Developer Experience

YOU CAN USE PROMPTS LIKE THESE:

•	 What could we improve about your tools?

•	 What’s an annoyance for engineers today that could

become a real risk in the future?

•	 What would help the company learn more quickly

through rapid feedback?

If you’ve established a high-trust environment, go a step

further and shadow engineers while they do their job. You’ll

be amazed at the workarounds you never knew people were

employing and the things you didn’t realize people were put-

ting up with.

Many or even most of the ideas you’ll come across will

have technical solutions, but don’t tune out people, processes,

and political challenges that merit different approaches.

Increasing engineering leverage without spending engineer-

ing time could be a huge win.

Collect empirical data

Your users will suggest lots of opportunities for improvement

— so many, in fact, that you’ll have difficulty choosing from

among them, and the initial list will feel infinite. This is when it’s

essential to have quantitative data to help guide your prioriti-

zation and validate the qualitative stories you hear. Be honest

about what you can, can’t, will, and won’t do.

It’s relatively easy to build observability into your internal

tooling. If you don’t already have a system to record the behav-

ior of internal tools, now might be the time to consider buying

or building one. An internal tool should be able to record every

invocation and its outcome, along with various metadata about

89

Developer Experience

the interaction. Most importantly, it should record how long a

developer has waited to get output from the tool.

If you make it easy to capture user experience data from

internal tools — say, by providing a standard API that other

engineers can use to collect signals that can be stored usefully

alongside other tooling data — internal tool authors will tend

to capture some metrics.

Developer surveys

Surveys are integral tools for comprehending developer expe-

rience beyond the team level. They provide two kinds of value:

•	 Validation. Surveys act as a barometer, gauging

whether the organization's strategies, tools, and

policies align with its intended outcomes. Essentially,

they confirm whether you’re on the right path toward

improving the developer experience.

•	 Discovery. Beyond mere validation, surveys also

function as windows into the uncharted territories

of developer needs, wants, and challenges. They

help organizations discover fresh avenues for

improvement.

An internal tool should be able
to record every invocation and
its outcome, along with various
metadata about the interaction.

90

Developer Experience Developer Experience

HOW TO USE SURVEYS

It’s good to do a comprehensive developer survey once or

twice a year, plus more informal but more frequent surveys

with smaller audiences. Here are a few statements that we’ve

found particularly useful to evaluate:

•	 I feel safe expressing concerns to my team.

•	 My team makes frequent improvements

based on feedback.

•	 My team systematically validates user needs.

•	 I have enough uninterrupted time for focus work.

•	 It’s simple to make changes to the codebases

I work with.

Ask about a timeframe short enough to remember but

long enough to be representative: “the last month” or “the last

week,” but probably not “the last six months.” Clearly defining

the period reduces random bias from people’s interpreta-

tions and assumptions. With that in mind, avoid questions and

prompts that include “since the last survey,” as well as those

that ask how or whether something has improved over an

indefinite timeframe. Use past survey data to assess changes

over time (and recognize that fully rolling out a survey ques-

tion will take at least two rounds).

You can make the responses fully open to promote trans-

parency and discussion, or you can run a confidential survey

to lower the threshold for reporting problems. Either way,

explicitly clarify how the responses will be used and reported.

If you go with confidential surveys, you need to be mindful of

a few key points:

91

Developer Experience

•	 Limit access to identifying data. For example,

a breakdown of survey results by tenure can be

extremely identifying in a small-ish company that’s

been around for a while.

•	 If you say the responses are anonymous, mean it.

Make it impossible to link a response back to a person

or any identifying metadata.

•	 Anonymous doesn’t mean unpublished. Make

clear to survey respondents whether you will publish

unattributed commentary.

THE CHALLENGES OF SURVEYS

One of the primary issues you’ll run into with surveys is the

squeaky wheel syndrome, where the loudest voices over-

shadow more valuable feedback. In this situation, you could

inadvertently channel resources to appease this vocal sub-

set, neglecting the broader (and sometimes more pertinent)

issues. Another challenge is recency bias, where respondents

predominantly focus on recent events while filling out the

survey, leaving behind older yet still impactful concerns. This

bias can sometimes amplify the significance of recent minor

issues while diminishing long-standing critical ones.

Sampling bias further complicates the survey landscape.

Without meticulous design and execution, surveys might

inadvertently cater to a specific developer subset. You might

end up with feedback that doesn’t holistically represent the

sentiments of the entire organization. Your best way to avoid

this bias is to encourage participation at a level close to 100%

of the engineering organization.

92

Developer Experience Developer Experience

Then there’s the challenge of striking the right frequency.

If you deploy surveys too often, you may run into survey

fatigue, diminishing the quality and quantity of feedback.

However, sparse surveys can fail to capture rapidly evolving

sentiments.

There’s also an inherent risk in tying objectives too tightly

to survey outcomes. While responding to feedback is vital, it’s

equally important to recognize that surveys are but one facet

of a multi-dimensional landscape. Over-reliance can lead to

reactive strategies rather than proactive ones.

DIVERSIFYING FEEDBACK CHANNELS

While surveys provide valuable insights, diversifying feedback

channels ensures a richer, more rounded understanding of

developer experience. Regular one-on-one sessions, open

discussions, a forum for submitting frustrations, shadowing

sessions, or even casual coffee chats can offer more contin-

uous insights into developer sentiments. Telemetry can also

provide continuous, passive feedback on tool usage patterns

and potential pain points.

Last survey Survey

Something
is improved

The reliability of survey
data decreases the

further you go in time

Something
else breaks

Surveys offer a
snapshot of the
present moment

THE CHALLENGES OF SURVEYS

93

Developer Experience

Fighting back
against interruptions
One of the critical concepts in productivity is flow, as

represented by the efficiency and flow pillar of SPACE.

Uninterrupted time is the building block of flow; in most orga-

nizations, there tend to be plenty of interruptions to measure.

These come in all shapes and sizes, from meetings to GitHub

outages and everything in between. Some interruptions are

more negatively impactful than others, especially in aggre-

gate. The right metrics for your purposes will depend on how

you understand the nature of the productivity challenges in

your organization.

Interruptions — anything that yanks a developer out of

that elusive flow state — can appear out of nowhere. They’re

often untracked and underestimated in their ability to derail

focus and productivity.

Some interruptions are genuinely urgent and require

immediate attention. Others stem from outdated processes or

habits and can be scheduled for later. An approach based on

Incident Incident
report

Wait for
code review

Review someone
else’s ticket

Team
meeting

Ship itShip itStart a Start a
ticketticket

Resume
ticket

Submit
code review

Incorporate
code review

feedback

INTERRUPTIONS

94

Developer Experience Developer Experience

the Eisenhower matrix can involve categorizing interruptions

based on urgency and impact and then devising a strategy to

handle each category effectively.

	 1 	� Urgent and important. Issues like production outages

that demand immediate attention and generally have

team-wide consensus for prioritization. Certain cus-

tomer situations can also fall into this category.

	 2 	� Important but not urgent. Things like discussing plans

for a new feature are important, but not necessarily

time-sensitive.

	 3 	� Urgent but unimportant. This is the class of inter-

ruptions that an engineer could solve but an equally

good and more timely response is available elsewhere.

For example, this kind of interruption happens when

a junior engineer asks a senior to answer a blocking

question, even though the answer is well-documented

and was also answered via chat last week.

Urgent Not urgent

N
ot

 im
p

or
ta

nt
Im

p
or

ta
nt

1

3

2

4

Crying baby
Kitchen fire
Some calls

Exercise
Vocation
Planning

Interruptions
Distractions
Other calls

Trivia
Busy work

Time wasters

THE EISENHOWER MATRIX

95

Developer Experience

	 4 	� Neither urgent nor important. Questions or issues

that could have waited or been solved through other

means. These are especially disruptive because they

often don’t warrant the break in focus they cause. For

example, this can happen when a manager stops by an

engineer’s desk without recognizing that the engineer

is otherwise focused.

Certain types of interruptions require a broader organi-

zational fix rather than individual adjustments — interruptions

like meetings, internal support, external support, and produc-

tion incidents. These not only impact the effectiveness of

individual software developers but can also destabilize teams

and processes as a whole, especially as a company scales.

The meeting dilemma

Meetings within an organization exhibit a wide range of effec-

tiveness. Some prove to be instrumental in decision-making

and collaboration, while others can frankly be worthless (and

occasionally verging on harmful). The underlying cost of a

meeting isn’t limited to its duration; it extends to the inter-

ruption of deep focus and to the trust that the meeting either

creates or erodes.

Engineers should designate blocks of time for focused

work, and these should remain inviolate. Calendar features like

auto-decline can safeguard these precious hours, preserving

dedicated work time.

A universal objective should be
to secure uninterrupted blocks
of concentration for all roles.

96

Developer Experience Developer Experience

The frequency of meetings often correlates with job

responsibilities. Leadership roles, such as engineering manag-

ers and tech leads, may find their schedules more populated

with meetings than other team members. Despite this vari-

ance, a universal objective should be to secure uninterrupted

blocks of concentration for all roles. For example, among ICs,

you could aim for at least four hours of focused work on four

days each week.

Minimizing and optimizing meetings frees up significant

blocks of productive time for teams. Here are some effective

strategies to consider:

•	 Clear objectives. Before scheduling a meeting,

clarify its purpose. If the objective can be achieved

through an email or a quick chat, opt for that instead.

•	 Audit recurring meetings. Periodically review

standing meetings to determine if they’re still relevant

or if their frequency can be reduced. Some weekly

meetings might be just as effective if held bi-weekly

or monthly.

•	 Agenda requirement. Insist on an agenda for every

meeting. This ensures that the meeting stays on

track and can also help participants evaluate if their

attendance is essential.

•	 Time limits. Meetings that exceed 30 minutes should

be rare, and meetings that exceed an hour should be

exceptional. Even for large undertakings, long meet-

ings tend to hurt more than they help. Conversely,

a series of shorter meetings, with time to reflect on

each, is more likely to result in powerful outcomes.

97

Developer Experience

•	 Limit attendees. Invite only those who are essential

to the meeting’s objective. A smaller, more relevant

group can often make decisions more quickly.

•	 Share the outcome of meetings. Small, focused,

agenda-driven meetings don’t need to be secretive.

Create a mailing list or chat channel where people

can stay up to date on projects or meetings they’re

interested in without having to attend all the time or

feel like they’re missing out.

•	 Empowered decision-making. Establish clear

protocols for decision-making that don’t always rely

on group consensus. Empower individuals or smaller

teams to make decisions where appropriate.

•	 Asynchronous updates. For meetings that are

informational or offer updates, consider asynchro-

nous methods. This could be recorded video updates

or written reports (or both) that individuals can review

independently. Remember that you’ll frequently

need to provide the same message multiple times in

multiple ways, so if it’s important — like an all-hands

meeting — make a point of ensuring that people

receive and incorporate the information.

A note on asynchronous collaboration

Asynchronous collaboration offers a significant advantage

over certain in-person meetings: it allows engineers to choose

when to engage with a task rather than disrupt their focus for

a meeting at a potentially inconvenient time. It also alleviates

the need to cram knowledge work into a 30-minute timeslot.

98

Developer Experience Developer Experience

To be successful at working asynchronously on decisions,

it’s useful to specifically define how you’ll handle them. One

practical step is to create templates for common deci-

sion-making processes. These templates provide a structured

approach to things like:

•	 Design reviews. A document to propose designs for

a significant new feature or capability. It describes

the business need, explains non-goals and tradeoffs,

and solicits feedback on key decisions.

•	 Build vs. buy decisions. A document to capture the

pros and cons of building a solution in-house versus

purchasing an off-the-shelf solution.

•	 New API or common library designs. A document

detailing the requirements, expected benefits, and

potential impacts of introducing a new API or shared

library.

Shared documents become a central part of asynchro-

nous collaboration. They allow team members to add their

input, edit, and comment in real time or at their convenience.

Establishing a window of time for commenting — a set period

during which team members can review and provide feedback

— ensures that discussions are timely but not rushed.

While the goal is to minimize live meetings, some topics

may still require synchronous communication to move the

conversation forward. A meeting is valid in this case, but think

carefully about who needs to be there. To make it easy for

people to consume the meeting without attending, record

the meeting and designate someone to take notes.

The effectiveness of asynchronous collaboration depends

on the tools at hand. Even today, some mainstream tools fall far

99

Developer Experience

short of supporting collaborative asynchronous work. Invest in

tools that enable real-time editing, commenting, and sharing.

While asynchronous collaboration is powerful, there are

also times when a quick synchronous discussion is more effec-

tive. Providing the means to effortlessly transition to an audio

or video call, or the physical space to have a quick conversa-

tion, can resolve complex issues more quickly.

Internal support

Internal support in a software organization ensures the smooth

functioning of teams, particularly as software engineers assist

their peers in navigating and completing tasks. It acts as a

bridge, filling in knowledge gaps, clarifying doubts, and facil-

itating better understanding. As vital as it is, this very support

system is typically disorganized, ad hoc, unrecognized, and

itself unsupported — for example, a single developer support

channel in a messaging tool where everyone asks everything.

As such, it can become a significant source of interruptions,

especially when the demand surpasses the supply of knowl-

edgeable peers who can assist.

One common cause of increased demand for internal

support is the absence of self-serve solutions. In an ideal

scenario, engineers would have tools, platforms, and docu-

mentation at their disposal to independently find answers to

their queries. Without these, they’re left with no choice but to

seek help from others, leading to frequent interruptions for

both the one seeking help and the one providing it. Similarly,

when clear, straightforward processes (aka happy paths) for

common tasks aren’t established, engineers often find them-

selves in a labyrinth of trial and error, pulling in colleagues to

help navigate.

100

Developer Experience Developer Experience

Perhaps more insidious is the issue of knowledge siloing.

When knowledge becomes the domain of a select few and

isn’t disseminated broadly, it creates an environment where

constant queries become the norm. Those in the know are

frequently interrupted, and those out of the loop continually

seek guidance. If a subset of engineers always provides sup-

port, it may prevent others from developing problem-solving

skills and self-sufficiency. You can solve this through knowl-

edge-sharing sessions, shadowing sessions, and partnering

on tasks unfamiliar to other team members.

However, relying heavily on certain team members can

stifle growth opportunities for the wider team. Similarly, if only

a few individuals are leaned on for support continuously, it

may lead to a scenario where critical knowledge resides with

only those few. This creates vulnerability in the team dynamics

if these individuals are unavailable. As a leader, you need to

make sure those people make a point of taking real time away

from work so that the organization can see how it reacts.

While internal support is an invaluable aspect of work

in software organizations, without the right structures and

resources in place, it can morph from a support system into

a persistent source of disruptions for a small group of peo-

ple who could be producing a lot more value. AI search tools

and knowledge-sharing sessions can help fill the gap, while

collaborative ways of working can help it from showing up in

the first place.

When knowledge becomes the domain
of a select few and isn’t disseminated
broadly, it creates an environment where
constant queries become the norm.

101

Developer Experience

External support

External support, especially for customers, users, and

user-facing colleagues, comes with its own set of challenges.

The requests can be unpredictable, of varying quality, and

cover a broad spectrum of topics. Some may be straight-

forward and easy to address, while others might be vague,

complex, or even misdirected, requiring more time and effort

to resolve.

To manage these sorts of demands, tools and processes

like ticket queues and WIP limits are invaluable. Here’s why.

•	 Visibility. Ticket queues provide a clear view of

incoming requests, shedding light on the current

workload and types of issues being raised.

•	 Prioritization. Understanding the queue helps in

resource allocation. It becomes feasible to triage

requests, ensuring that high-priority or urgent issues

are addressed swiftly and engineers are only pulled in

when necessary.

•	 Workload management. WIP limits act as a buffer,

ensuring that support teams aren’t swamped with

an unmanageable number of requests at once. This

allows for a consistent quality of support.

To further streamline the process, office hours can be a

big help. Setting specific periods dedicated to addressing

external queries ensures:

•	 Predictability. Both the support team and those

seeking support have a defined window. This clarity

helps in setting expectations.

102

Developer Experience Developer Experience

•	 Focus. When not in the office hours window, teams

can redirect their attention to other pressing tasks,

ensuring a balanced distribution of effort and time.

Continually analyze your support workload to find things

you could proactively address. Self-serve configuration, UX

improvements, help center articles, guides, or training ses-

sions can completely eliminate entire categories of customer

support requests.

Production incidents

Just as all meetings aren’t created equal, the same goes for

incidents. When assessing incidents, several factors matter.

•	 Frequency. How often are incidents happening?

•	 Severity. How significant is the problem — is it a

minor hiccup or a full-blown outage?

•	 Impact. What were the broader consequences for

systems and users?

•	 Time spent. How long did the incident last? How

much time did we spend on it after that?

If you’re tracking these parameters, do so transparently.

Incident metrics should inform, not intimidate, ensuring that

no one feels the need to underreport or diminish the scale of

an incident.

Truly blameless post-incident reviews can be transforma-

tive, providing a platform to dissect what went wrong and how

to prevent future occurrences. By identifying patterns and

drawing up actionable items from each incident, teams are

better poised to anticipate and mitigate future challenges.

103

Developer Experience

Moreover, integrating tools for incident analysis can offer

granular insights, highlighting potential areas of vulnerability.

Implementing a first-responder rotation ensures that a ded-

icated team is always on standby, primed to tackle incidents,

and can distribute responsibility more evenly.

Are you interruption-aware?

Answering the following questions can reveal insights into

how well the organization is prepared to manage interruptions.

The goal isn’t to eliminate them entirely but rather to measure,

reduce, and manage them in a way that aligns with the team’s

needs and the organization’s objectives.

	 1 	�	� Do you have a system for tracking interrup-

tions? Understanding the nature and urgency of

interruptions can go a long way in managing them

effectively. Are you capturing data on what kinds

of interruptions are most frequent and which types

disproportionately affect certain team members?

This will help in deciding where to invest time in

process improvements.

	 2 	�	� Are you measuring the right things? Metrics

offer a quantitative way to understand the bur-

den of interruptions, but are you measuring the

things that truly matter? For instance, beyond just

By identifying patterns and drawing up
actionable items from each incident,
teams are better poised to anticipate
and mitigate future challenges.

104

Developer Experience Developer Experience

tracking the number of meetings, are we look-

ing at their ROI? And when it comes to internal

and external support, do you have visibility into

how much time is spent and the quality of those

interactions?

	 3 	�	� How much slack do teams have? If you aim for

100% utilization, you’re setting yourself up for

failure. What level of buffer time do you build into

our sprints or roadmaps to account for inevitable

interruptions, and are you revisiting these assump-

tions periodically to ensure they still hold?

	 4 	�	� How do you capture and share knowledge? Many

interruptions, especially internal support ones, can

be reduced through better knowledge sharing. Do

you have a centralized repository, internal forums,

or other mechanisms where team members can

find answers to common questions? How often is

this resource updated, and is it easily accessible to

everyone?

	 5 	�	� Are there more things you could automate or

make self-serve? Many interruptions stem from the

fact that it’s never seemed worthwhile to automate

something or make it self-serve for a non-engineer

— it seems easier to just have an engineer do it

when it needs doing. If you feel like interruptions

are getting in your way, that mindset might not be

helping. Automate the things that are pulling your

engineers’ attention away from their work.

The dynamics of interruptions will change significantly as

a company grows and its needs change. By taking an ongoing

105

Developer Experience

and proactive approach to these interruptions, software engi-

neering organizations can build more sustainable, efficient,

and resilient work environments. When you make your pro-

cesses interruption-aware, your team can focus on what they

do best: building great products.

Setting experience goals
When you get specific about the source of interruptions that

prevent continuous focus, you have something more satisfy-

ing than just satisfaction surveys: metrics that can be mea-

sured reliably and consistently, and thus, metrics we can seek

to improve. That doesn’t mean you throw out the satisfaction

survey; you just accept it as a lagging indicator as you improve

the things above. Satisfaction is a measurement you use to val-

idate your work, not something you try to chase week to week.

User experience objectives (UXOs) offer a complemen-

tary framework for thinking about developer experience. With

UXOs, you agree on acceptable behavior for your tools. As a

few very basic examples, you can agree that should

never take more than two minutes, saving in an editor should

rarely take more than two seconds, and CI/CD checks should

return results within 15 minutes.

These UXOs can operate independently, guiding expe-

rience goals for individual tools. Their potency increases

Tracking bad days across the
engineering organization provides
insights into common pain points
and opportunities for improvement.

106

Developer Experience Developer Experience

when aggregated. When a developer experiences breaches

in a certain number of UXOs, you know that the developer is

having a bad day. Tracking bad days across the engineering

organization provides insights into common pain points and

opportunities for improvement.

UXOs also furnish real-time insights into engineers’ expe-

riences, allowing for adaptable goal-setting and innovative

problem-solving. Setting goals around UXOs versus complet-

ing a specific project or task lets you work to improve devel-

oper experience without being constrained by rigid plans.

Don’t confuse UXOs with service-level objectives (SLOs),

as unlike SLO breaches, UXO breaches aren’t necessarily

urgent; they define expectations for tool behavior that the

user can measure their experience against, which can guide a

tooling team on where to spend its time.

UXOs focus on meaningful enhancements, fostering a

direct connection between the lived experiences of engineers

and the people responsible for supporting those experiences.

They fill the gap when you’re tempted to set goals based on

surveys or other sources of organizational health metrics.

Just because you’re not setting goals for these metrics

doesn’t mean that you shouldn’t know what “good” would look

like in your organization. Getting to 100% satisfaction or zero

regretted attrition is unrealistic, so what would your organiza-

tion consider success? There’s likely to be a ceiling on overall

satisfaction and a floor on regretted attrition, both put in place

by your organization’s culture and incentive structure.

Developer Experience

107

What’s next?
In this chapter, we looked at developer experience and the

things that influence it, focusing especially on different types

of interruptions and mitigations. We wrestled with the fact that

most developer experience data will be qualitative and that

many developer experience problems require non-code solu-

tions and explored options to set developer experience goals.

In the next chapter, we’ll look at how to put the lessons of

this and previous chapters into practice.

Developer Experience

FURTHER READING

Drive: The Surprising Truth About What Motivates Us,

by	Daniel H. Pink. Explores the core elements of motivation

and	how	they	can	be	applied	in	a	work	environment,	includ-

ing for software developers.

Flow: The Psychology of Optimal Experience,	by	Mihaly

Csikszentmihalyi. Discusses in detail how uninterrupted

focus	allows	people	to	reach	a	state	of	heightened	eff	 i-

ciency and satisfaction in their work.

Peopleware: Productive Projects and Teams,	by	Tom

DeMarco and Timothy Lister. A classic in the software

development	fi	eld,	focusing	on	the	human	side	of	software	

development and team dynamics.

Deep Work: Rules for Focused Success in a Distracted World,

by	Cal Newport. A guide on how to achieve focused and

productive work, which is particularly relevant for developers

dealing with complex tasks and needing deep focus.

Agile Retrospectives: Making Good Teams Great,

by	Esther Derby and Diana Larsen. Provides tools and

techniques	for	eff	ective	agile	retrospectives,	emphasizing	

continuous	improvement	and	problem-solving	throughout	a	

project's life.

108

Developer Experience Developer Experience

Site Reliability Engineering: How Google Runs Production

Systems,	by	Niall Richard Murphy, Betsy Beyer, Chris

Jones, and Jennifer Petoff . An in-depth look into Google’s

approach	to	building,	deploying,	monitoring,	and	main-

taining some of the largest software systems in the world,

including incident management processes.

The Field Guide to Understanding “Human Error”,	by	Sidney

Dekker.	While	not	exclusively	about	software	engineering,	

this	book	is	highly	regarded	in	the	Learning	From	Incidents	

community.	It	off	ers	insights	into	how	to	understand	and	

learn from human errors in complex systems.

109

110

Putting It All Together Putting It All Together

5Putting It All
Together

Build: Elements of an Effective

Software Organization

.

111

Putting It All Together

N
ow it’s time to take everything you’ve

read and turn it into a plan. Your com-

pany’s size, age, and culture guarantee

that your situation is unique, so we’re

limited in making hyper-specific recom-

mendations. Still, there are some proven

patterns in structuring any organization for success, rolling out

an effectiveness effort, and choosing and monitoring metrics.

In this chapter, we’ll share our experience with the founda-

tional work of identifying and eliminating bottlenecks at the

team level. Then, we’ll outline a high-level framework for imple-

menting an organization-wide effectiveness effort. We’ll wrap

up by talking about the challenges of managing change and

sharing a framework for managing change-related feelings.

Identifying and eliminating
delivery bottlenecks
At Swarmia, we’ve seen time and again that when teams focus

on improving just a few key areas, the payoff comes quickly.

•	 Workflow. What does the flow of work look like for

your team? Does everything take forever, or do things

normally go fine, with the exception of some worri-

some outliers? Do you routinely finish the things you

start? How much time does work spend in a waiting

state?

•	 Priorities & WIP limits. Does your team have clear,

stable priorities? How many things does your team

work on at once? Is it generally obvious to software

engineers what they should work on next? Do you feel

like your team is too busy to ever do anything well?

112

Putting It All Together Putting It All Together

•	 Keeping the lights on (KTLO). How much time does

your team spend doing chores or fighting fires due

to past decisions? How does this affect your ability to

deliver predictably? How does it impact morale?

•	 Manual work and toil. What does the team do man-

ually on a somewhat predictable basis and why? Are

your tests, deployments, and rollbacks all automated?

Does your team planning include time to automate

these tasks regularly?

•	 Decisions owned outside the team. How often does

the team need to wait on someone on the outside to

make progress with their work?

Here’s a closer look at each area, what it looks like when

you have bottlenecks, and what to start doing today to get

things on a better path.

WORKFLOW

What to watch for

•	 Consistent delays in task completion.

•	 Certain types of tasks are routinely blocked.
•	 Unpredictable delivery.

What to start doing today

•	 �Track cycle times and change lead times for your

code changes and issues (task, story, epic, bug, etc.)

•	 Track the time engineers spend waiting on CI/CD.

•	 Track the time work is waiting or idle.

113

Putting It All Together

PRIORITIES & WIP LIMITS

What to watch for

•	More work in progress than members on the team.
•	 Overwhelmed engineers.

•	 Frequent changes in priorities.

•	 Unfinished work.
What to start doing today

•	 �Set a WIP limit for roadmap projects/stories, starting

with the number of devs in the team divided by 2.

•	 �Learn how to collaborate and plan work in a way
that allows multiple engineers to work on a larger

roadmap item.

•	 �Only allow a higher WIP limit when workflow metrics
are not ballooning because of the change.

•	 �Maintaining some “slack” in your capacity increases

your ability to deliver faster. Aim for 75-85% utiliza-

tion of your team (not 100%) to preserve the team’s

productivity.

KTLO & REACTIVE WORK

What to watch for

•	 �KTLO consumes more than 30% of a team’s time.

•	 �Incidents cause frequent disruptions to focused

work.

•	 �Team goals are routinely delayed due to lack of slack

to handle reactive work.

114

Putting It All Together Putting It All Together

What to start doing today

•	 �Track change failure rate to understand quality.

•	 �Track engineering investment according to the

Balance Framework, explained in Chapter 2.

•	 �If a team is spending more than 30% of its capacity

on KTLO and reactive work, consider whether this

could be reduced by prioritizing work that improves

quality, customer support (discussed in Chapter 4),

or developer productivity. If prioritizing that work

isn’t practical, consider whether the team is the right

size for the surface it owns.

MANUAL WORK AND TOIL

What to watch for

•	 �Recurring manual tasks are time-consuming and

error-prone.

•	 Deployments require human attention.

What to start doing today

•	 ��Automate CI/CD and deployments.

•	 �Create a culture where quick automations just get

done without extensive discussion.

•	 �Check your investment balance to make sure you
always invest at least 10% of your capacity in produc-

tivity improvements.

•	 �Encourage and incentivize conversations about
productivity improvements.

115

Putting It All Together

DECISIONS OWNED OUTSIDE THE TEAM

What to watch for

•	 Work stalls while waiting for external input.

•	 Poor sequencing of dependencies.

•	 Top-down priority changes.

What to start doing today

•	 �Consider the guidance in Chapter 2 about organiz-
ing teams and making tradeoffs. Are the tradeoffs

you made still the right ones?

•	 �Ensure your team has the skills it needs to operate

effectively without requiring regular technical

assistance.

•	 �Quantify the impact of processes that are external

to your team in terms of wait time, effort, and

interruptions.

•	 �Establish visibility into the progress of cross-team
initiatives.

Finding opportunities in these areas is usually painfully

straightforward, and chances are good that engineers in

your organization already have strong ideas about what to

do. Acting on those opportunities will require finding ways to

invest in the time and culture needed to implement solutions

now and moving forward.

Convenient fallacies to avoid

Certain fallacies tend to come up whenever people talk about

bottlenecks. In the course of your conversations, it will be

tempting for you or someone else to say things like:

116

Putting It All Together Putting It All Together

•	 “We aren’t doing enough up-front require-

ment-gathering.” Detailed up-front requirements

aren’t just unnecessary — they can be detrimental

when they restrict a team’s ability to adapt and evolve

as projects progress. The most successful projects

embrace evolving requirements, allowing for innova-

tion and responsive changes. Adhering too rigidly to

initial specifications leads to inefficiency and stifles

innovative solutions.

•	 “What we really need is more people.” The notion

that insufficient staffing is a primary bottleneck

overlooks the underlying issue of WIP limits. Adding

more staff to a project does not solve productivity

problems; it often exacerbates them due to onboard-

ing costs and increased coordination challenges.

Effective productivity stems from ruthless prioritiza-

tion and managing and optimizing the workload and

capabilities of the existing team, not indiscriminately

increasing team size.

•	 “We just need to plan better.” Extensive planning

is often mistakenly idolized as the key to successful

project execution. Over-planning can bind a team to

a trajectory that may become irrelevant as project

dynamics evolve. Effective planning requires balance

— it provides direction, but not so much that it

impedes flexibility and rapid response to change.

•	 “It doesn’t work that way here.” Perhaps when

you hear this, you’ll have stumbled upon the exact

problem, but it’s not one you can solve with code.

Culture change might be needed to embrace all the

recommendations in this book, and culture change is

scary and hard.

117

Putting It All Together

Generally, be wary of claims that more processes will make

things go faster, and be skeptical when someone suggests a

headcount fix (unless they’re advocating for staffing a plat-

form team, that is). Remember, any proposed fix that changes

the size, shape, or remit of a team can affect productivity —

positively or negatively — for months.

Keep effectiveness top of mind

An effective engineering organization is a differentiator in

recruiting and retaining engineers and bringing value to your

users. Engineering effectiveness should be an ongoing top-of-

mind concern because it’s an engineering organization’s single

best lever for delivering more and better business results.

Encourage your team to experiment with new methods,

tools, and processes. WIP limits are especially interesting

to experiment with if you haven’t done so before. Create an

environment where process experimentation is allowed and

part of the team’s culture. Whether it’s adopting new software

tools or implementing automation, these experiments can lead

to significant productivity gains.

Embed continuous improvement into your team’s routine.

Regularly discuss topics like workflow, priority management,

and automation opportunities. This keeps the team focused on

productivity and encourages a culture of ongoing improvement.

Use these discussions not only to identify areas for improve-

ment but also to plan and commit to specific actions. Keep the

focus on the team’s way of working, not on any individual.

Involve business stakeholders in your improvement initia-

tives. Their understanding and support can be pivotal, espe-

cially when changes impact timelines or require resources.

Demonstrate with data that the proposed changes align with

118

Putting It All Together Putting It All Together

business goals, and lean on “the business” to support you

with time, tooling, and training. Yes, this could be hard, but

improvements in this space don’t come for free in the short

term, even while they pay for themselves in the long term.

Alternatively, don’t involve business stakeholders if your

reality doesn’t allow for it. You can make improvements just

within your group team, without support from the organization

or the business, but you may need to

get creative in the short term. In the

long term, demonstrated improve-

ment might buy you the agency to

make bigger changes with bigger

results — or give you a great story

to tell when you start looking for a

new role.

Implement and track metrics

that accurately reflect the team’s

improvement over time. This could

include tracking DORA, SPACE, or other relevant metrics.

Regularly review these metrics to assess whether your changes

are working. This data-driven approach not only helps to

fine-tune your tactics but also provides tangible evidence

of improvement, which can be motivating for the team and

reassuring for stakeholders.

Know when to move on

As one bottleneck is addressed and resolved, it ceases to be

the limiting factor in your workflow. The new bottleneck is in

another area of the process. At this point, it’s time to move

from actively working on the first bottleneck toward monitor-

ing it to ensure there’s no backsliding.

Engineering
effectiveness is
an engineering
organization’s
single best lever
for delivering
more and better
business results.

119

Putting It All Together

By continuously moving the focus to the current bottle-

neck, you maintain a steady flow in your processes, enhancing

overall efficiency and productivity. Identifying, addressing,

and monitoring bottlenecks is an ongoing process — one part

of an overall effort at continuous improvement.

Driving an effectiveness effort
Implementing an engineering effectiveness program is no

small feat, and thoughtfully sequencing your approach will

increase your chances of success. Here, we sketch a roadmap

to guide you on this journey, broken down into six key stages:
 1 baseline, 2 research, 3 act, 4 invest, 5 normalize, and
 6 sustain (or BRAINS, for a memorable acronym):

	 1 	� In the baseline stage, you lay the groundwork for your

journey. Start with an inventory of the metrics you have

today. Implement tooling and processes to understand

the current delivery and team health situation.

	 2 	�� Next, immerse yourself in the environment of your

engineering teams during the research stage, seeking

to understand their challenges and victories first-hand

through shadowing, interviews, and hands-on work.

	 3 	� With this understanding, act immediately to implement

small but meaningful improvements that can positively

impact the team’s work.

	 4 	� After tackling quick wins, it’s time to invest in longer-

term improvements. Start standardizing processes and

tools across teams to reduce complexity and improve

consistency.

120

Putting It All Together Putting It All Together

	 5 	� Having implemented these changes, you can work to

normalize the new processes across the organization,

increasing adoption to maximize impact.

	 6 	� Finally, commit to long-term investments in improving

the developer experience in the sustain stage. The chal-

lenges you face will evolve as the company itself does.

 1 BASELINE

The first step is understanding your current situation.

Start from the table stakes identified in Chapter 1 (for

organizations) and Chapter 3 (for teams). Does your orga-

nization uphold and support these table stakes? If not, as

mentioned earlier, there will be a ceiling on the improvement

you can achieve.

Take an inventory of the delivery-related metrics you have

today and identify useful ones that would be easy to add. Take

a moment to assess team health by considering satisfaction,

attrition rates, and engagement levels. If you’re still small, this

should happen organically; once you’re larger than 10 engi-

neers, you may also want to create more intentional feedback

mechanisms. Paint a picture of where things stand today for

yourself and your stakeholders.

This is also a good time to consider implementing DORA

metrics that accurately represent your software delivery

performance. Getting these metrics in place demands devel-

oping a discipline (and systems) that you’ll be grateful for in

the future.

Now is also a good time to routinely attach Balance

Framework labels to your work items to start to paint a picture

of where your time is going. You may want to build or buy a

121

Putting It All Together

tool	that	makes	this	easier.	Again,	this	is	a	practice	you’ll	be	

grateful for later.

Remember,	the	goal	of	this	stage	is	not	to	create	bench-

marks	for	comparison	between	teams	or	individuals	but	rather	

to understand the present state so you can track improvement

over time.

 2 RESEARCH

Knowing how your engineering teams experience their work

is	essential	to	achieving	real	engineering	eff	ectiveness	wins.	

Spend time shadowing engineers, conducting interviews,

and doing hands-on work. Understand their daily challenges,

frustrations, and moments of triumph. Pay particular attention

to	their	work	patterns,	collaboration	habits,	and	pain	points.	

Watch	for	systemic	issues	that	might	be	slowing	them	down	

or	causing	unnecessary	stress.	This	fi	rst-hand	understanding	

will	be	invaluable	in	identifying	eff	ective	productivity	and	

experiencing improvements.

time

 N Normalize

 A Act

 B Baseline

 R Research

 I Invest

 S Sustain

im
p

ac
t

THE BRAINS FRAMEWORK

122

Putting It All Together Putting It All Together

Now is also the time to review your early Balance Frame

work data. Where are teams spending their time? Are there

any surprises in the data? What adjustments need to be made?

 3 ACT

Now that you understand your engineers’ current state and

unique needs, it’s time to tackle the quick wins. These are small,

relatively easy improvements that nonetheless have a mean-

ingful impact on the daily work of your teams. They could be

anything from streamlining a standard process to eliminating

a manual task or addressing a common source of frustration.

Who’s going to work on these quick wins? For now, ensure

that every one of your engineers knows they have permission

to spend a little time making things better. Consider giving

an engineer or two a few weeks on rotation to tackle an issue

they’re passionate about. Publicly celebrate both large and

small improvements, and publicize the biggest opportunities.

 4 INVEST

With the low-hanging fruit addressed, it’s time to focus on lon-

ger-term improvements at the organizational level. This often

involves standardizing processes and tools across teams to

reduce complexities and inconsistencies. Consider creating a

dedicated platform team responsible for developing and main-

taining shared tools and infrastructure. This investment in stan-

dardization can result in significant productivity boosts and

make cross-team collaboration smoother and more effective.

Starting a team doesn’t have to be a big production; the

team lead already works at your company and is looking for

a new opportunity. They’re the self-directed, consistently

high-impact person who’s been poking at flaky tests and

123

Putting It All Together

exceeded expectations last quarter by automating the entire

build and deployment. They’re a favorite collaborator among

technical and non-technical folks alike, and they live for a good

session of code archaeology.

The second engineer is also a colleague, and they were

exceeding expectations within their first months. They’re a

smart execution machine in

need of a good mentor. They’re

interested in humans and com-

puters, hungry for challenging

problems, and don’t mind if

people in the real world don’t

see their work.

You will be most successful

if this team thinks of internal

engineer platforms as prod-

ucts and understands that products have users — users whom

you need to talk to and listen to, especially when they’re frus-

trated. A platform team’s ultimate goal is to help those users

produce more value for the same amount of effort.

 5 NORMALIZE

Standardization only delivers its full benefits when it becomes

the default. You want to create happy paths for common

development tasks, like adding a new API endpoint or building

a new feature in the user interface. Drive the adoption of these

new processes, making it the new normal for how things are

done. This step will require clear communication to explain the

changes and their benefits, thorough training to ensure every-

one knows how to work within the new systems, and incentives

to encourage adoption.

Starting a team
doesn’t have to be a
big production; the
team lead already
works at your company
and is looking for a new
opportunity.

124

Putting It All Together Putting It All Together

Support development teams throughout this transition

and be open to feedback and suggestions for improvement.

You can form an adoption squad to help teams make the

transition and understand the benefits. Whenever possible,

automate these transitions. When that’s not possible, be sure

to frame migration and usage instructions from the perspec-

tive of the platform user, not the platform creator.

 6 SUSTAIN

Maintaining and improving engineering effectiveness is not a

one-off task but a long-term commitment. As your company

grows, so will the complexity of your engineering effectiveness

challenges. Continually invest in improving your understand-

ing of these evolving challenges and devising innovative

solutions. Set strategic goals that reflect this commitment

and foster a culture of continuous learning and improvement.

Remember, you are focusing on improving the overall

effectiveness of your engineering organization, not on spe-

cific tactics or short-term goals. This mindset will help you

remain adaptable and responsive to the changing needs of

your engineering teams.

Managing change
Introducing new ways of working can be a daunting task. To do

it well, you need to be thoroughly familiar with the change and

its reasons while also considering the human ability to have big

feelings about seemingly small changes. If you simply show up

one day and say, “We’re going to start measuring your work,”

things probably aren’t going to go well.

125

Putting It All Together

Engineering leadership coach Lara Hogan writes and

speaks about the BICEPS framework, developed by Paloma

Medina, for understanding these human reactions. She

emphasizes that everyone needs these six things to feel at

ease about work and that any kind of change can suddenly

disrupt any one of them.

Human need Strategies

Belonging:
The need to feel

part of a community.

Ensure changes don’t isolate
individuals and maintain
inclusive team dynamics.

Improvement/progress:
The desire for personal

and professional growth.

Link changes to
development opportunities

and career advancement.

Choice:
The need for

autonomy in work.

Involve employees in
the change process and

preserve their control over
their work.

Equality/fairness:
The importance of
equitable treatment.

Apply changes consistently
and transparently to avoid
perceptions of unfairness.

Predictability:
The preference for

stability and certainty.

Communicate clearly
about changes, providing a

roadmap to alleviate anxiety.

Significance:
The desire to do
meaningful work.

Align changes with
organizational goals

and show how each role
contributes to these

objectives.

126

Putting It All Together Putting It All Together

With these core needs in mind, it’s easy to see that the first

step in driving change is building trust with the people who will

be affected. Trust, of course, has to be earned; even if you’re

operating in a generally high-trust environment, a change

perceived as substantial can make people uneasy. Especially

in low-trust environments, trust-building activities are going

to be essential to successful change.

There are a few things you can do to earn trust around a

change effort.

•	 Offer social proof that this change has been valuable

elsewhere. Of course, all businesses are different, but

if other businesses in your industry or at your stage

have embraced certain practices, that should carry

some weight.

•	 Run a pilot or proof of concept with a small set of

teams. Iteration within a small group will help you

decide what you want to roll out more widely.

•	 Participate in the process you’re trying to improve

and experience the difficulties first-hand. Share your

learnings and let them inform your next steps.

•	 Celebrate successes widely and loudly, and

incentivize the change you want to see.

Transparency likewise plays a huge role in how a change

is received. Communicate clearly, frequently, and in multiple

channels about why you’re making the changes and what out-

comes you hope to achieve from them. Communicate about

what’s working and what’s not. Communicate about how lead-

ership is contributing to and supporting the improvements in

substantive ways.

127

Putting It All Together

Many organization-wide changes can take months to roll

out, and rolling out an engineering effectiveness effort is no

different. Along the way, inform your next steps with feedback

from the people impacted by the changes you’re making. As

with any feedback, you don’t have to act on all of it, but be

prepared to explain how you choose what to act on and what

to set aside.

An engineering effectiveness effort can touch many of

the BICEPS needs. For example, belonging can be affected

if a person feels like their work won’t be as valued when people

start looking at effectiveness metrics, predictability can take

a hit as software engineers wonder how their performance

reviews will be affected, and significance can suffer if people

feel their contribution is being reduced to numbers.

Whole books have been written on managing change,

so we are, at best, scratching the surface with the concepts

discussed here. The most important takeaway is that change

is hard and thus needs to be approached with care. While you

can just flip a switch to introduce a new process, tool, or other

way of working, it’s not likely to go well — a change of any

significance needs thoughtful planning and communication.

Trust, of course, has to be earned;
even if you’re operating in a
generally high-trust environment,
a change perceived as substantial
can make people uneasy.

128

Putting It All Together Putting It All Together

What’s next?
Throughout your effectiveness journey, it’s important to

focus on the ultimate goal: improving the experience and

productivity of your engineers. This means avoiding getting

too caught up in specific metrics or tactics at the expense of

actual improvement.

This chapter provided a solid foundation for that jour-

ney, but once again, every organization and team is unique.

Remember to remain flexible, responsive, adaptable, and

cognizant of the changing needs of your engineering teams.

Putting It All Together

FURTHER READING

Leading Change,	by	John P. Kotter. Kotter provides an eight-

step process for leading change with powerful insights and

practical tools.

The Goal: A Process of Ongoing Improvement,	by	Eliyahu M.

Goldratt.	This	book	introduces	the	Theory	of	Constraints,	a	

methodology for identifying the most important limiting factor

(i.e.	bottleneck)	in	a	process	and	systematically	improving	it.

Switch: How to Change Things When Change Is Hard,	by	

Chip Heath and Dan Heath.	Off	ers	insights	into	how	to	eff	ect	

transformative change in organizations, which is useful for

understanding and managing the human side of organizational

change.

Lean Thinking: Banish Waste and Create Wealth in Your

Corporation,	by	James P. Womack and Daniel T. Jones.

Provides a deep dive into lean principles, focusing on eliminat-

ing	waste	and	improving	eff	 iciency,	which	are	key	to	address-

ing	process	bottlenecks.

Crucial Conversations: Tools for Talking When Stakes Are

High,	by	Kerry Patterson, Joseph Grenny, Ron McMillan,

and Al Switzler.	Valuable	insights	into	handling	high-stakes	

conversations.

Core Needs: BICEPS,	by	Paloma Medina. A framework for

thinking	about	human	needs,	informed	by	neuropsychologists,	

psychologists, and sociologists. palomamedina.com/bicepspalomamedina.com/biceps

129

Putting It All Together

WE’RE HERE TO HELP

Now that you’ve made it this far, you
understand that a lot goes into building
and sustaining an eff ective engineering

organization — more than technology, more
than people, more than process.

When	you’re	ready	to	introduce	an	engineering	eff	ectiveness	

program,	this	book	will	point	you	in	the	right	direction.	As	you	

start to understand the landscape at your own company, con-

sider the market for existing software that could support your

particular goals.

Of	your	options,	Swarmia	is	the	only	engineering	eff	ective-

ness platform that focuses on holistic, continuous improve-

ment	across	business	outcomes,	developer	productivity,	and	

developer experience.

If	you	want	to	increase	healthy	visibility	into	your	engineer-

ing	organization,	have	higher-quality	conversations	based	on	

team-level productivity insights, and proactively improve the

experience	of	building	software	at	your	company,	let’s	talk.	

Swarmia	just	might	be	the	right	partner	for	your	journey.

Whether you’d like a quick tour of Swarmia or a casual,

no-strings-attached	conversation	with	Otto	or	Rebecca,	feel	

free to email us at hello@swarmia.comhello@swarmia.com . .

130

131

About the authors

Rebecca Murphey is the Field CTO at Swarmia and hosts

the Engineering Unblocked podcast. Previously, she drove

engineering effectiveness efforts as an engineering leader

at Stripe and Indeed, implementing some of the most trans-

formative productivity improvements these companies saw

during her tenure. She lives in Durham, North Carolina.

Otto Hilska is a serial entrepreneur and the founder and

CEO of Swarmia. In 2009, he co-founded Flowdock (the

Slack before Slack), acquired by Rally Software in 2013. After

leaving Rally, Otto worked as the Chief Product Officer of

Smartly.io, leading a fast-growing software organization while

navigating emerging bottlenecks. He lives in Helsinki.

About Swarmia

We know from experience that building an effective software

organization is not a one-and-done project. That’s why we’ve

designed Swarmia, the engineering effectiveness platform, to

guide organizations on their continuous improvement journey,

whether they’re only just getting started or are further along

the path.

Thousands of companies, from startups to enterprises,

use Swarmia to maximize business outcomes, developer

productivity, and developer experience. Learn more at

swarmia.comswarmia.com. For more resources related to this book, visit

swarmia.com/buildswarmia.com/build.

Endmatter

132

Acknowledgments

Ari Koponen, for providing extensive technical editing

and input.

Jack Humphrey, for providing invaluable feedback on an

early draft of this book.

Eero Kettunen and Miikka Holkeri, for their input and

feedback.

Pinja Dodik, for championing and guiding this project.

Feedback and errata

If you believe you’ve found an error in this book or something

that can be improved, please contact books@swarmia.combooks@swarmia.com

to ensure your feedback is considered for the next edition.

133

Endmatter

Oskari Kallio in Helsinki created the beautiful illustrations

in this book. The typefaces used in this book are Factor A

by Ilya Naumoff and Bagnard by Sebastien Sanfilippo.

The book was edited by Ari Koponen and copy-edited by

Christy Gibbs.

