
Elements of an
Effective Software
OrganizationBuild

Rebecca Murphey
& Otto Hilska

Introduction

Copyright © 2024 Swarmia. All rights reserved.

Book version: 2.0—January 2024

Introduction

 Preface iv

 1 INTRODUCTION 3

	 How	we	approach	effectiveness	in	this	book	 	 	 4

	 How	we	talk	about	teams	 	 	 	 	 6

	 Setting	the	stage	for	an	effectiveness	effort	 7

 Measurement and goal-setting 10

 A note on frameworks 14

	 Table	stakes	 14

	 What	we	left	out	 17

	 What	to	expect	from	this	book	 19

 2 BUSINESS OUTCOMES 20

 Organizing for outcomes 21

 Balancing engineering investments 38

 What to do when you’re drowning in KTLO 43

 Setting priorities 45

	 OKRs:	A	framework	to	communicate	priorities	 47

 Managing cross-team initiatives 52

 3 DEVELOPER PRODUCTIVITY 58

	 Defining	developer	productivity		 59

	 Measuring	productivity	 68

	 Classic	productivity	challenges	 77

	 Setting	goals	around	productivity	 78

 Tools and tactics 80

ii

Contents

Introduction

 4 DEVELOPER EXPERIENCE 84

 Measuring developer experience 85

	 Identifying	improvements	 86

	 Fighting	back	against	interruptions	 93

 Setting experience goals 105

 5 PUTTING IT ALL TOGETHER 110

	 Identifying	and	eliminating	delivery	bottlenecks	 111

	 Driving	an	effectiveness	effort	 119

 Managing change 124

 What’s next? 128

	 About	the	authors	 131

	 About	Swarmia	 131

 Acknowledgments 132

	 Feedback	and	errata	 132

iii

E
ngineering organizations are operating in

unfamiliar territory. Not so long ago, hiring

more	engineers	was	the	obvious	solution	

to increase output and drive growth. Many

engineering leaders fell into the trap of

believing	that	the	sheer	increase	in	num-

bers	would	lead	to	getting	more	done.

Looking	back,	this	never	truly	made	sense.	We’ve	known	

since The Mythical Man-Month that adding people — espe-

cially if you do so quickly — is actually a recipe for slowing

down,	yet	it	was	a	path	well-worn	by	countless	companies.

Now the landscape has changed, and sometimes it feels

like	it	happened	overnight.	Suddenly,	there’s	abundant	uncer-

tainty	about	how	to	deliver	more	business	outcomes	with	

fi	xed-size	teams.	Moreover,	no	company	wants	to	do	it	in	a	

iv

Preface
by Otto Hilska

Founder & CEO of Swarmia

Preface

way that strains the engineers doing the work. In fact, the most

positive changes can occur with systematic approaches that

make	individual	engineers	more	productive	by	improving	the	

experience	of	building	software	in	your	organization.	

Leaders	are	responsible	for	building	the	framework	that	

allows teams and individuals to succeed in this new environ-

ment.	It’s	no	longer	about	throwing	more	bodies	into	the	fray	

and	hoping	everything	works	out.	Today,	it’s	about	implement-

ing	transparency,	defi	ning	supportive	processes,	and	driving	

coherent strategies that align the goals and incentives of the

software	engineers,	their	teams,	and	the	products	they	build.

This	book	exists	to	help	you	navigate	that	space.	There’s	

a	never-ending	stream	of	guidance	out	there	about	each	of	

these topics — developer experience, developer productivity,

and	driving	business	outcomes	—	but	very	few	resources	that	

bring	all	of	them	together	under	a	single	umbrella.	This	book	

attempts to close that gap.

The	systems	and	ecosystems	we	build	to	help	us	deliver	

software products are fundamentally human, and no organi-

zation is exactly like another. Whether you’re at the outset of a

journey	to	hone	the	value	created	by	your	software	develop-

ment organization or you’re already somewhere along the way,

fi	nding	the	best	path	to	success	starts	by	understanding	the	

unique context of your company.

To	that	end,	this	book	is	not	a	mere	collection	of	recom-

mendations;	it’s	a	guide	to	understanding	the	bigger	picture	

of	engineering	eff	ectiveness,	including	hard-earned	wisdom	

about	the	inevitable	pitfalls	and	dead-end	paths	that	may	

tempt you along the way.

If	you	fi	nd	this	topic	as	interesting	as	I	do,	this	book	is	for	

you. Happy reading.

v

Preface

Introduction

Build

By	Rebecca	Murphey	&	Otto	Hilska

Elements of an
Effective Software

Organization

2

Introduction Introduction

.1Introduction

Build: Elements of an Effective

Software Organization

3

Introduction

T
here are plenty of origin stories for a

company’s decision to invest in sustain-

ing	and	improving	the	effectiveness	of	

its engineering organization. Sometimes

it’s a simple conversation among leaders:

“Is it just me, or did we ship things faster

in	the	past?”	Sometimes	it’s	preceded	by	painful	failure:	“We	

missed	most	of	our	objectives	last	half,	and	product	and	engi-

neering	are	pointing	fingers	at	each	other.”	And	sometimes,	it’s	

driven	more	by	curiosity	about	an	opportunity	than	an	acute	

or targeted need: “I’ve heard of SPACE and DORA, and I think

they could help us.”

Each of these origin stories — and every other story that

eventually	leads	a	person	like	you	to	read	a	book	like	this	—	has	

a	unique	motivation.	How	the	problem	is	stated	tells	you	much	

about	the	underlying	issues	you’ll	find	when	you	dig	into	the	

situation. It’s relatively easy to adopt a new approach when

you can operate with curiosity and a mindset of continuous

improvement,	but	it’s	much	more	challenging	when	you’re	

trying	to	solve	an	acute	problem	within	the	constraints	of	a	

company’s current size, age, and culture.

This	book	aims	to	collect	the	best	practices	of	software	

product development, drawing on lean principles, modern

product and project management principles, systems thinking,

and	much	more.	Much	has	been	written	on	these	individual	

How the problem is stated tells
you much about the underlying
issues you’ll find when you dig
into the situation.

4

Introduction Introduction

topics	across	various	books	—	see	our	recommended	reading	

at	the	end	of	each	of	the	following	chapters	—	but	here,	we	

attempt to pull it all together into a coherent framework for

running a software organization.

How we approach effectiveness
We	like	to	think	of	effectiveness	by	breaking	it	down	into	

three concepts: 1 business outcomes, 2 developer pro-

ductivity, and 3 developer experience.	Delivering	business	

outcomes is the ultimate goal of any software organization.

Once you know where you’re headed, developer productivity

is	about	getting	there	quickly.	Developer	experience	is	about	

discovering how you might increase the continuous time an

engineer	can	focus	on	valuable	work	while	remaining	satisfied	

and	engaged	with	their	job.

Many	discussions	of	engineering	effectiveness	focus	on	

just one of these concepts without recognizing that they are

all	intertwined.	In	this	book,	we	look	at	each	area	individually	

and	then	discuss	how	to	bring	them	together	into	a	coherent	

and	actionable	plan	for	improvement.

BUSINESS

OUTCOMES

DEVELOPER

PRODUCTIVITY

DEVELOPER

EXPERIENCE

THE EFFECTIVENESS TRIAD

5

Introduction

 1 BUSINESS OUTCOMES

A fundamental challenge of delivering a successful product

is	intelligently	allocating	finite	resources	to	seemingly	infinite	

problems	and	opportunities.	The	decisions	involved	here	are	

difficult	at	any	organization	size,	and	they	aren’t	limited	to	soft-

ware engineering. Organizational design plays a huge role in

how	well	a	business	can	achieve	its	goals.	There’s	a	real	risk	of	

trying	to	do	too	many	things	at	once,	with	the	inevitable	result	

that few of them get done well, if at all. In larger organizations,

these decisions often happen organically and implicitly, with

fuzzy	lines	of	accountability	and	no	clear	overarching	picture	

of who’s spending time (and money) on what.

Effective software organizations focus their
investments on the right outcomes.

 2 DEVELOPER PRODUCTIVITY

Without intention and intervention, the pace of shipping value

will decline over time, and doing what has always worked won’t

always keep working. Engineering leaders are increasingly held

accountable	for	the	value	their	organizations	deliver	—	and	

they are increasingly at risk of people outside engineering

deciding how to quantify this value. The processes that move

Many discussions of engineering
effectiveness focus on just one of
these concepts without recognizing
that they are all intertwined.

6

Introduction Introduction

work through an engineering organization — ideally creating

customer value at the end — are evolving, emergent, and often

difficult	to	inspect	or	understand.	As	an	organization	grows	

larger, the leverage points to drive improvement move from

the team to the organization as a whole, and the forces that

speed	or	impede	delivery	become	more	varied	and	broadly	

distributed.

Effective software organizations make fast
and consistent progress toward their goals.

 3 DEVELOPER EXPERIENCE

Developer	experience	is	arguably	the	other	side	of	the	devel-

oper	productivity	coin,	and	it	can	be	hard	to	separate	the	two.	

Developer experience focuses on what it’s like to work within

your organization’s code and deliver its software. Developer

experience	efforts	should	emphasize	eliminating	wait	time	and	

interruptions,	ensuring	that	your	codebase	isn’t	making	work	

harder	than	it	needs	to	be.

Effective software organizations give engineers
the support and tools they need to feel engaged.

How we talk about teams
Throughout	the	book,	we	use	a	few	words	consistently	to	

describe	the	scope	of	a	situation,	problem,	or	solution.

7

Introduction

• The business. The overarching entity that pays the

bills.	It	encompasses	the	engineering	organization	

as well as other functions such as sales, marketing,

customer	support,	finance,	and	more.

• The organization or the engineering organization.

The	group	of	people	responsible	for	delivering	

technical	solutions	to	achieve	business	objectives,	

including software engineers, product managers,

product designers, and other supporting roles.

• The group. A group of related engineering teams,

usually	led	by	a	director,	that’s	part	of	a	larger	

engineering organization.

• The team. A cross-functional group of people

focused	on	delivering	technical	solutions	to	specific	

business	problems,	usually	in	the	context	of	a	specific	

problem,	product,	or	persona.	

Setting the stage
for an effectiveness effort
If	creating	an	effective	software	organization	is	A	Thing	You	

Should	Care	About	in	your	role	—	whether	you’re	a	line	man-

ager or the CTO — it’s good to ask yourself a few questions to

prepare for the conversation ahead.

• Why is this important? What’s motivating the com-

pany	to	spend	time	on	this	topic?	How	does	it	beat	

out other goals? How high up does the plan go?

• Why is this important now? Software organizations

can	always	be	more	effective,	but	now	is	suddenly	the	

time you’re paying attention. What changed?

8

Introduction Introduction

• What have you tried so far? How did you decide you

needed to do something else?

• What metrics are you tracking today? Where are they

falling short? How are they changing over time?

Smaller companies may still need to nail the delivery

fundamentals at the team level, while larger companies may

form dedicated teams to standardize, automate, and speed up

development	processes.	At	a	certain	size,	it	takes	effort	just	to	

sustain the same amount of productivity; even if the engineer-

ing	headcount	isn’t	growing,	the	codebase	is,	and	quickly.	As	a	

company	grows,	its	investment	in	its	continued	effectiveness	

needs to grow too, as the later that investment starts, the more

debt	must	be	paid	down.	At	a	certain	size,	you’ll	consider	a	ded-

icated platform team to keep that software development eco-

system humming as you continually accumulate lines of code.

A	company’s	culture	determines	the	likely	pace,	breadth,	

and “stickiness” of its improvements. Companies that highly

E
FF

EC
T

IV
E

N
E

S
S

BaselineBaseline

TIME

CHALLENGES INCREASE OVER TIME

Continuous improvement

“Normal” scale-induced trajectory

Credit: John Cutler

9

Introduction

value	team	technical	autonomy	face	different	challenges	

than companies with standardized tooling and centralized

processes. The depth of trust throughout the leadership chain

will	influence	how	readily	people	embrace	productivity	efforts,	

and	the	company’s	engineering	ladder	will	play	a	big	part	in	

who	raises	their	hand	to	do	the	work.	When	thinking	about	how	

to	drive	change,	don’t	pick	fights	with	the	culture.	Instead,	use	

it to your advantage whenever you can and reshape it (gently)

only when you must.

Answering the following questions will deepen your under-

standing of how these three factors come into play.

• What does “better” look like?	Your	engineering	

effectiveness	investment	proposal	was	approved.	

It’s	two	years	later,	and	everything	is	better.	You	can’t	

believe	you	used	to	spend	time	doing	…	what?	What	

has changed? Looking at the current reality, what’s

kept you from making these changes?

• Who benefits when we achieve better? This is a trick

question	because	the	answer	is	“everyone,”	from	

product to sales, customer support to engineering to

users.	Where	will	you	find	reliable	allies	and	champi-

ons	for	more	effective	delivery	—	even	if	it	comes	at	

some	near-term	costs	such	as	slower	delivery	of	bug	

fixes	and	new	features?

• What kinds of potential changes are in scope? Does

the	business	think	of	this	as	an	engineering	problem,	

a	business	problem,	or	both?	What	is	the	scope	of	

the most senior person who will sponsor necessary

change, even if it has near-term costs? Who will warm

up to the cause after a couple of success stories?

10

Introduction Introduction

• What are the biggest obstacles you expect? Now is

not the time for rosy optimism. Talk openly with anyone

who	wants	to	pitch	in	about	what	will	be	hard.	Maybe	

two	different	engineering	organizations	aren’t	aligned	

on	what’s	important;	maybe	you	expect	the	CEO	to	

defer	to	product	priorities	instead.	Maybe	everyone’s	

on	the	same	page	but	you	worry	that	procuring	a	tool	

will	take	six	months.	This	sort	of	effort	can	go	sideways	

in many regards, so anticipate whatever you can.

Each company takes its own path to arrive at the start of

its productivity journey, and the path it follows after that will

likewise	be	unique.	There	is	plenty	to	learn	from	what	others	

are doing, plenty we can standardize as an industry, and plenty

you	can	discover	from	this	book.

Anyone who tells you there’s One True Way is lying. The

way	to	improve	your	situation	will	be	unique	to	the	size,	age,	

and culture of the company in which you operate.

Measurement and goal-setting
Being	a	software	leader	would	be	a	lot	easier	if	we	didn’t	have	

to	figure	out	whether	we	were	doing	a	good	job.	Of	course,	

every	data-driven	bone	in	our	bodies	says	we	need	to	measure	

something to know we’re going in the right direction, and every

company leader would likely agree.

We’ll	delve	into	specific	measurements	in	the	upcoming	

chapters,	but	a	few	caveats	generally	apply	to	measuring	

things in this space.

First,	it’s	easy	to	get	bogged	down	in	figuring	out	how	

to measure the impact of something rather than doing The

Thing.	With	enough	time	and	code,	you’ll	probably	get	there,	

11

Introduction

but	remember	to	ask	yourself	whether	that	time	is	worth	the	

benefit.	Sometimes,	all	you	need	to	do	is	 1 make sure no

one	thinks	The	Thing	is	a	terrible	idea,	 2 do The Thing, and
 3 check in with your users or stakeholders to see whether

they noticed that you did The Thing. Don’t fall into the trap

of	delaying	action	—	and	thereby	delaying	benefit	—	just	

because	you	haven’t	yet	worked	out	how	you’ll	count	some-

thing.	Be	prepared	to	advocate	for	and	celebrate	clear-if-un-

measurable	wins.

Second,	metrics	—	especially	qualitative	ones	—	can	be	

difficult	to	interpret	correctly	and	consistently.	The	space	is	

full	of	both	lagging	indicators	of	success	and	indicators	that	

can	be	hard	to	trust	because	they’re	biased	by	a	moment	

in time. Self-reported satisfaction scores, for example, are

deeply	subject	to	moment-in-time	bias,	even	to	the	whims	of	

traffic	on	the	commute	to	work	that	day.	They	can	drop	quickly	

and tend to recover slowly. Decisions on how you slice your

data	can	also	hide	problems.	An	average	metric	might	over-

emphasize outliers, while p50 can hide pathological cases at

p99.	On	the	other	hand,	looking	at	p99	all	the	time	can	lead	to	

optimizations	that	benefit	relatively	few	use	cases.	

Third,	there’s	a	fine	balance	between	metrics	that	guide	

improvements and those that make people perceive a lack

of trust. However, this tension shouldn’t stop you from mea-

suring.	Instead,	it	emphasizes	the	need	to	be	open	and	trans-

parent	about	the	data	you	collect,	how	you	collect	it,	and	how	

you use it to evaluate individuals and teams. Be transparent

with	individual	contributors	(ICs)	about	what	you’re	measuring	

and	how	it	will	be	used.	Make	it	easy	for	them	to	see	the	data	

they’re	contributing.

Finally,	remember	that	these	kinds	of	metrics	work	best	

as	conversation	starters	and	pretty	terribly	as	comparison	

12

Introduction Introduction

metrics when there’s a change in context — for example, a

staffing	change	or	a	change	in	priorities.	The	conversations	

the	metrics	drive	will	differ	from	team	to	team	—	teams	tend	to	

have	meaningful	differences	in	their	skill	sets,	tenure,	seniority,	

codebases,	complexity,	and	so	much	more	that	it	becomes	

irresponsible	to	compare	them	head	to	head.

With these caveats in mind, you can see how goal-setting

around	any	metric	in	the	effectiveness	domain	will	likely	have	

some gotchas. Be especially wary of setting goals around

human-reported metrics — for example, a developer satisfac-

tion metric or one that counts how often engineers complain

about	something.

Choosing metrics and tracking progress

The	desire	for	measurement	can	paralyze	an	effectiveness	

effort.	Metrics	are	valuable,	but	a	lack	of	them	shouldn’t	block	

progress	on	well-known	problems.

Decisions on how and whether to measure something

should	be	the	output	of	a	thoughtful	and	deliberative	pro-

cess	about	what	better	would	look	like.	It’s	okay	if	some	of	

your	ambitions	are	intangible,	such	as	“Deploy	issues	shouldn’t	

dominate our next developer survey.”

 The Goals, Signals, and Metrics framework is helpful here

— and note that metrics come last.

There’s a fine balance between
metrics that guide improvements
and those that make people
perceive a lack of trust.

13

Introduction

• Goals focus on outcomes, not the anticipated

implementation.

• Signals are things that humans can watch for to

know if you’re on track.

• Metrics are the actual things you measure and

report on to track progress toward the goal.

In	this	framework,	you	first	agree	that	there’s	a	problem	

worth	solving.	Then,	you	set	a	goal	that,	if	achieved,	would	be	

clearly	understood	as	progress	toward	solving	the	problem.	

Next, you have the “I know it when I see it” conversation — what

statements, if true, would have everyone nodding in agree-

ment that you were progressing? These are your signals.

Finally,	you	arrive	at	the	metrics,	but	again,	a	word	of	cau-

tion:	don’t	beat	yourself	up	to	measure	something	when	broad	

agreement	about	the	existence	of	a	clear	signal	would	be	suf-

ficient	to	declare	success,	nor	when	the	change	has	another,	

more	notable	business	impact.	There’s	a	ton	of	accruing	value	

to	measuring	your	development	process,	but	not	all	aspects	of	

productivity	can	be	measured	conveniently,	if	at	all.

Working	on	a	goal	often	starts	by	establishing	a	baseline	

for the current reality. Stay focused on the desired outcome,

not the metric or tactic. Keep your focus on making things

easier for engineers, use that focus to motivate increased

observability	of	processes,	execute	on	the	opportunities	you	

find,	and	know	that	quantitative	data	will	sometimes	disagree	

with	the	stories	you’ve	been	told.

You	may	initially	find	it	difficult	to	set	a	specific	target	

for	the	metrics,	and	that’s	not	just	okay	but	expected.	When	

tackling	a	problem,	focus	on	trends	—	up	or	down	and	to	the	

right as appropriate. If you continue to focus on the issue

14

Introduction Introduction

over	subsequent	quarters,	you’ll	have	more	information	to	set	

targets	or	acceptable	thresholds.

A note on frameworks
There are numerous frameworks to help you improve your

software organization — SPACE and DORA are a couple that

are currently in fashion. Each framework is useful in its own

way,	and	they’re	all	worth	knowing	about,	but	none	tell	you	what	

to do in your particular situation. None of them can claim to

offer	a	single	metric	that	you	can	observe	and	set	goals	around	

—	in	fact,	only	DORA	is	particularly	prescriptive	about	any	

metrics at all.

If you approach the productivity space with a mindset of “I

need to implement DORA” or “We’ll just follow SPACE,” you’ll

likely	have	difficulty	driving	meaningful	change.	Frameworks	

offer	a	way	of	thinking	about	a	problem,	not	a	to-do	list.	They’re	

a skeleton on which you hang some ideas that will turn into a

plan, which you’ll then implement and iterate upon.

A	framework	can	also	offer	guardrails	against	counterpro-

ductive decisions if stakeholders agree to it on principle. For

example, a core tenet of SPACE is that metrics that span the

framework	can	often	be	in	tension	with	one	another.	This	tenet	

can	be	a	good	reminder	when	metrics	aren’t	moving	the	way	

you might have expected.

Table stakes
Any	effectiveness	effort	becomes	significantly	easier	if	you	

adopt	and	embrace	a	few	proven	principles.	These	principles	

are so essential that we’ll revisit them throughout the rest of

15

Introduction

this	book,	whose	guidance	will	be	of	limited	use	if	you	don’t	

also	embrace	or	move	toward	these	principles	in	your	orga-

nization. Indeed, if your engineering organization struggles

to	be	effective,	at	least	one	of	these	principles	is	probably	

absent.

 1 Empowered teams. When teams can make autonomous

decisions	about	their	work,	organizations	can	respond	

more quickly to changes, improve motivation, and ship

solutions more likely to meet customer needs. When

they	must	rely	on	others	to	make	progress,	the	effec-

tiveness	of	their	teams	suffers.

 2 Rapid feedback. Quick	and	frequent	feedback	enables	

rapid	learning	and	adjustments.	This	agility	helps	bet-

ter align the product with market needs and customer

expectations.	When	you	have	weeks-long	feedback	

cycles,	a	lot	can	go	wrong	between	check-ins.

 3 Outcomes over outputs. Focus on the value and impact

(outcomes) of engineering work rather than just the

volume	or	efficiency	of	deliverables	produced	(out-

puts).	This	ensures	that	development	efforts	actually	

contribute	to	business	goals	and	customer	value.

Let’s dig into each of these in more detail to see what they

look like in practice.

 1 EMPOWERED TEAMS

Empowering teams means delegating decision-making

authority to those closest to the work. Providing teams with

the necessary context and trusting them to make informed

decisions	can	enhance	efficiency	and	motivation.

16

Introduction Introduction

Consider a scenario where a software development team

regularly	encounters	delays	due	to	a	cumbersome	and	out-

dated deployment process. Instead of management dictating

a	specific	solution,	empowering	the	team	would	involve	giving	

them the authority to research, propose, and implement a

new deployment strategy. This could include choosing new

deployment tools, redesigning the deployment pipeline, or

adopting new practices like continuous deployment.

This approach recognizes that the team that knows the

deployment	process	is	best	positioned	to	improve	it	based	on	

their experience. It also makes the team more invested in the

outcome than if there’s just a top-down mandate. Allowing the

team to experiment and take risks can lead to more innovative

solutions	than	if	decisions	are	made	solely	by	management.	It	

also speeds up decision-making, as there’s no need for multi-

ple	rounds	of	external	approval	and	feedback.	

Note that this doesn’t mean all decisions should or will

fall	to	individual	teams;	some	decisions	properly	belong	at	

the	organization	or	even	business	level.	An	empowered	team	

will	feel	confident	in	providing	input	and	feedback	on	those	

decisions when they have it.

 2 RAPID FEEDBACK

Rapid	feedback	can	include	frequent	automated	testing,	

continuous integration, code review, stakeholder reviews, and

many other moments in the software development lifecycle

where you need to decide whether to proceed or change

course.

Delayed	feedback	results	in	rework,	wasted	time	and	effort,	

and	missed	opportunities.	We	get	feedback	from	our	tools,	

our peers, our stakeholders, and our customers; according to

17

Introduction

this	principle,	we	want	to	solicit	this	feedback	regularly	and	

frequently	rather	than	bundling	up	large	chunks	of	work	for	

one	cumbersome	and	time-consuming	mega-review.

When there is a need for an approval or review process,

one	of	the	best	ways	to	ensure	rapid	feedback	is	to	establish	

a	feedback	cadence	so	that	there	is	never	a	large	backlog	

of	work	to	be	reviewed.	By	reviewing	smaller	batches,	future	

batches	can	be	informed	by	the	feedback	on	earlier	batches,	

rather	than	working	on	a	large	batch	of	work	and	then	learning	

at	feedback	time	that	you’ve	missed	the	mark.

 3 OUTCOMES OVER OUTPUTS

Goals	and	success	measurements	should	be	based	on	out-

comes, such as customer satisfaction or market share, rather

than	outputs,	such	as	the	number	of	features	released,	bugs	

closed,	or	story	points	completed.	Incentivizing	teams	based	

on output volume can steer them to invest in quantity over

business	impact.

When	you	align	team	objectives	with	business	outcomes	

and	use	metrics	that	reflect	these	outcomes,	you	encourage	

innovation	and	creative	problem-solving,	ensuring	that	the	

work	contributes	effectively	to	the	organization’s	goals.

The	table	on	the	next	page	highlights	key	differences	

between	the	two	approaches.

What we left out
There	are	a	few	topics	you	might	expect	to	see	in	a	book	like	

this that aren’t present — leadership, performance manage-

ment,	and	compensation,	to	name	a	few.	This	was	a	deliberate	

Introduction

18

Introduction

Aspect Output-based approach Outcome-based approach

Definition
of success

The quantity of what
is produced, such as
features, documentation,
or lines of code.

The impact on customer
behavior	and	business	
results, such as improved
customer satisfaction or
increased sales.

Key metrics

Measures include the num-
ber	of	features	deployed,	
code commit frequency,
and deadlines met.

Measures include customer
engagement metrics, con-
version rates, market share,
and revenue growth.

Development
focus

Focus is on executing a
predefined	set	of	tasks	and	
deliverables.

Focus is on validating
hypotheses	about	customer	
needs	and	business	value	by	
delivering	the	smallest	viable	
increment.

Feedback
loop

Feedback	is	often	related	
to whether the product
is delivered on time and
within	budget.

Feedback	is	based	on	how	
well the product changes
user	behavior	or	improves	
key	business	metrics.

Decision-
making

The progress of deliv-
erables	drives	decisions	
according to the project
timeline.

Decisions	are	driven	by	data	
and	insights	about	what	will	
move the needle on desired
outcomes.

Approach
to change

Changes are often viewed
as	a	setback	or	a	sign	of	
planning failure.

Changes are viewed as
opportunities to learn and
pivot toward more impactful
results.

Team
alignment

Teams may work in silos,
with each department
focusing on their own set
of	deliverables.

Cross-functional teams work
collaboratively,	with	a	shared	
understanding that the goal
is to achieve the desired
outcomes.

Response
to failure

When a feature or project
does not meet the speci-
fications	or	deadlines,	it	is	
considered a failure.

Failure is viewed as a learning
opportunity that informs the
next	iteration	and	brings	the	
team closer to achieving the
outcomes.

19

Introduction

choice	to	keep	the	book	focused	on	the	interaction	among	

business	outcomes,	developer	productivity,	and	developer	

experience.

Of course, leadership, performance management, and

compensation do play a role in the satisfaction of your engi-

neers, just like the technical tools they use. Although we don’t

address these topics at length, keep in mind that they can all

be	levers	for	improvement.

What to expect from this book
So	far,	we’ve	surveyed	the	engineering	effectiveness	land-

scape and all the factors likely to make your situation incon-

veniently unique. We also looked at three ways of working

—	empowered	teams,	rapid	feedback,	and	outcomes	over	

outputs	—	that	are	key	to	any	effectiveness	effort.

In the next three chapters, we’ll look at each of the areas

of	effectiveness	we	outlined	above:	business	outcomes,	devel-

oper productivity, and developer experience. In these chap-

ters,	we’ll	share	guidance	that’s	broadly	applicable	despite	

company	differences.	We’ll	conclude	with	a	chapter	that	offers	

a loose roadmap encompassing all three areas to address

organization-wide	improvements	in	effectiveness.

Let’s get to work.

You’ll find resources related to the
book at swarmia.com/build

20

Business Outcomes Business Outcomes

2Business
Outcomes

Build: Elements of an Effective

Software Organization

Effective software organizations
focus their investments on the

right outcomes.

.

21

Business Outcomes

2
A

chieving	business	outcomes	isn’t	solely	

about	 writing	 code	 or	 shipping	 new	

features;	it	requires	delivering	tangible	

results	that	align	with	business	objec-

tives, all while maintaining product qual-

ity,	efficient	feature	delivery,	operational	

stability,	and	user	satisfaction.	

In this chapter, we’ll explore how to structure a software

development organization. Then, we’ll share a framework to

guide	engineering	teams	in	balancing	short-term	gains	with	

long-term	sustainability.	We’ll	wrap	up	by	discussing	practices	

for successful prioritization.

Organizing for outcomes
The structure of an organization plays an integral role in

	how	well	the	organization	can	deliver	business	outcomes.	An	

organization’s	job	is	to	promote	efficiency	and	productivity,	

communicate	effectively	with	organization	members	and	

stakeholders,	provide	clarity	in	goals	and	alignment	with	busi-

ness goals, and ultimately, deliver on those goals.

Teams exist to manage complexity

Teams, not individuals, are the atomic units that make up an

engineering	organization.	In	the	beginning,	an	organization	

may have only one software development team, and there’s lit-

tle	complexity	to	manage.	Team	members	have	touched	most	

of	the	codebase,	and	the	codebase	is	small	and	tidy	enough.	

Everyone knows everyone.

However, as a company accumulates new customers, fea-

tures,	and	business	needs,	the	full	scope	of	the	software	grows	

22

Business Outcomes Business Outcomes

difficult	for	any	single	person	to	grasp.	More	and	more	of	the	

company’s software engineers have never touched critical

parts of the software. Finding the right person to ask a tech-

nical	question	sometimes	becomes	a	multi-day	adventure.	

This is why we have teams. By dividing into teams, an orga-

nization	can	take	on	more	complex	problems	and	tasks	while	

effectively	delivering	business	outcomes.	The	concept	of	a	

team allows a small group of people to feel connected with

their	objectives,	codebase,	and	teammates.	

At	the	same	time,	creating	a	team,	by	definition,	creates	a	

silo. When you put a group of people together, you’re implicitly

saying	that	it’s	more	important	for	this	group	to	be	in	sync	with	

each other than with those outside the team. Silos are often

considered	in	a	negative	light,	but	without	some	degree	of	

siloing, everyone would have to pay attention to everything

all	the	time,	and	things	would	undoubtedly	fall	between	the	

cracks.	With	teams,	we	create	focus	and	efficiency,	even	at	the	

expense	of	more	cross-team	collaboration	in	some	situations.

What is a team?

A team is more than a group of people assigned to work with

each	other.	A	viable	team	has	common	objectives	and	a	clear	

understanding	that	success	at	those	objectives	requires	team	

By dividing into teams,
an organization can take
on more complex problems
and tasks while effectively
delivering business outcomes.

23

Business Outcomes

members	to	depend	on	and	trust	each	other.	Everyone	on	the	

team	has	clear	roles	and	responsibilities	without	establishing	

rigid	lines	between	how	different	team	members	contribute.	

Team	members	decide	on	the	team’s	goals	in	a	process	that	

values and considers the input of one another, stakeholders,

and dependent teams; the success of a team is measured

against	its	goals	and	objectives.	

Teams	have	team	members,	typically	from	disciplines	

including software engineering, product design, and product

management, among others. This cross-functional approach

helps	foster	a	sense	of	ownership	and	collaboration	across	the	

team	rather	than	different	roles	that	work	by	handing	work	off	

from one person to another.

Perhaps	most	importantly,	a	team	should	be	substan-

tively	able	to	deliver	value	to	the	organization	using	only	the	

resources of that team. If a group of people can only create

value in partnership with another group, they’re not a team.

Empowered teams are more resilient to organizational change

and allow room for growth and development.

Tradeoffs in team design

There are four key areas to consider when you’re designing

teams within a software organization.

 1 Outcomes. You	need	to	align	teams	with	the	company’s	

investment	priorities	and	important	business	metrics,	

ensuring	that	the	desired	outcomes	are	being	achieved	

efficiently.

 2 Features. Every product area needs clear ownership in

the	form	of	a	team	responsible	for	its	development,	bug	

fixes,	and	improvements.

24

Business Outcomes Business Outcomes

 3 People. Healthy,	effective	teams	include	diverse	view-

points and skill sets, including those relating to soft-

ware engineering, product management, and design.

 4 Architecture. Conway’s law reminds us that the user-

facing systems we create tend to mirror the organiza-

tional structure that created them.

When	these	areas	are	well-defined,	they	establish	the	

boundaries	 of	 a	 team’s	 ownership	 and	 responsibilities.	

Creating	effective	teams	involves	evaluating	tradeoffs	in	skill	

set requirements, dependencies on other teams, optimal team

size, support and coaching needs, standardization, architec-

tural	support,	and	domain	complexity.	You’ll	almost	never	get	

it	right	the	first	time,	so	experimentation	will	be	necessary	

before	you	land	on	a	good	mix.

Compromises	will	be	necessary.	Having	one	larger,	more	

diverse	team	might	be	more	practical	than	having	two	smaller	

but	deeply	interdependent	teams	(for	example,	a	frontend	

team	and	a	backend	team).	Sometimes	it’s	not	feasible	to	

include every skill set within a single team, leading to alterna-

tive solutions like formal or informal organizations for certain

skills. Sometimes the deployment target — for example, iOS

— warrants a team all its own.

Sometimes it’s not feasible to
include every skill set within a
single team, leading to alternative
solutions like formal or informal
organizations for certain skills.

25

Business Outcomes

Effective	teams	tend	to	include	engineers	with	experi-

ence across the stack. People whose experience with various

aspects of software development — from data to systems

design to frontend, if needed — can accelerate an engineer-

ing	effort	on	multiple	levels.	

In	cases	where	the	codebase	 is	complex	and	wasn’t	

designed	to	be	worked	on	by	independent	teams,	you	might	

need	to	address	technical	debt	or	even	rearchitect	parts	of	

the	system	before	you	can	achieve	better	scalability	and	team	

autonomy.

Different kinds of teams
for different purposes

Developing an engineering organization requires understand-

ing	the	distinct	needs	that	different	types	of	teams	fill	and	

the order in which to introduce each type of team. Here’s a

focused approach on how to strategically develop these

teams,	considering	their	unique	purposes	and	contributions.

 1 START WITH PRODUCT TEAMS

The initial manifestation of an engineering organization is typ-

ically a single product team. Product teams are fundamental in

owning	and	managing	specific	slices	of	your	business	domain,	

allowing them to operate with a high degree of autonomy and

minimal dependencies.

Product teams make decisions and deliver features that

directly	drive	business	outcomes.	This	model	aligns	with	rapid	

and	effective	product	development,	as	each	team	becomes	

responsible	for	a	distinct	product	segment,	ensuring	focused	

and specialized attention to their respective areas.

26

Business Outcomes Business Outcomes

In	practice,	product	teams	start	by	focusing	on	key	business	

areas or customer segments. As the organization grows, these

teams expand, diversifying into more specialized units while

maintaining their core focus on their segment of the product.

As	an	organization	evolves,	product	teams	will	be	the	most	

common type of team.

 2 INTEGRATE PLATFORM TEAMS

Once you have a few product teams, you’ll often discover that

they act like independent companies. On the one hand, this

is	by	design;	on	the	other	hand,	you	generally	don’t	want	six	

product	teams	solving	essentially	the	same	hard	problem	in	

six	different	ways.	

Some platform needs are common across almost all soft-

ware companies. For example:

• CI/CD	pipelines	to	get	changes	quickly	and	reliably	

to production.

• Design systems that make it easier for all frontend

developers	to	build	consistent	interfaces.

• Scaffolding	to	deploy	new	microservices	quickly	

in the company’s cloud environment, with security

and compliance requirements met and with a good

developer experience.

The idea with platform teams
is that whatever your company
is doing a lot of, it should get
really good at doing.

27

Business Outcomes

However,	some	platform	needs	will	be	very	specific	to	your	

company. The idea with platform teams is that whatever your

company is doing a lot of, it should get really good at doing.

These	could	be	things	like

• Tooling	and	libraries	to	visualize	data	in	a	data-heavy	

product.

• Ways	to	build	integrations	for	an	integration-heavy	

product,	with	tools	like	debugging	webhooks	and	

building	authentication	flows.

• Ways to tackle app performance issues so that teams

can	build	features	with	less	focus	on	scalability.

• Abstracting	away	unnecessary	details	of	your	

business	so	that	everyone	can	move	faster.

No	matter	how	important	an	objective	is	for	your	company,	

you can’t suddenly assign a thousand engineers to work on it

using	systems	built	for	10	engineers	and	still	expect	results.	To	

that end, large tech companies often invest 30-50% of their

engineers	in	platform	teams	with	the	objective	of	allowing	the	

rest of the engineers to move faster.

The evolution and eventual roster of platform teams can

vary	quite	a	bit	from	one	organization	to	another.	A	single	plat-

form team can own many things. Still, eventually, you tend to see

a	platform	team	break	into	several	sub-teams,	each	focused	on	

providing	a	specific	type	of	value	to	product	team	engineers.

 3 INTRODUCE SPECIAL TEAMS

As the organization continues to scale, certain areas will

emerge	that	don’t	fit	neatly	into	existing	product	or	platform	

28

Business Outcomes Business Outcomes

team structures. This is where you may have to get creative and

design another type of team.

Product teams and platform teams have fairly simple pat-

terns of ownership and communication needs. At some point,

you’ll	want	to	make	a	tradeoff	that	doesn’t	perfectly	fit	these	

models,	and	that’s	fine	—	as	long	as	you	recognize	the	tradeoff	

you’re making.

A team might specialize in one of these aspects:

• Enabling. They	could	be	helping	the	rest	of	your	

organization	with	security,	recruiting,	onboarding,	or	

any other crucial aspect.

• Complex subsystem. Sometimes a system is

important enough to warrant continuous investment

in a team that maintains it

• Temporary or project-based. These teams are often

formed	to	address	specific	challenges	or	objectives,	

and	may	be	disbanded	or	reformed	as	goals	are	

achieved	or	priorities	change.	This	could	be	a	big	

migration from yesterday’s testing framework to

whatever we do today. Be aware that they might leave

behind	code	whose	ownership	is	questionable.

• Objective-driven. Some	teams	are	defined	by	spe-

cific	objectives	they	aim	to	achieve,	not	by	a	product	

or	codebase	boundary.	This	could	be	a	team	that’s	

focused	on	cross-cutting	customer	onboarding	

experience.	A	significant	portion	of	the	team’s	work	

involves	collaborating	in	areas	owned	by	other	teams.	

This requires them to have strong cross-functional

communication and coordination skills.

29

Business Outcomes

EVOLUTION OF TEAM STRUCTURES

The evolution of team structures in an engineering organi-

zation typically follows a progression from product teams to

platform teams and eventually to special teams, as needed.

This progression aligns with the growing complexity and diver-

sifying	needs	of	the	business.

 1 Product teams. The most common kind of team in an

organization.	Your	organization’s	first	team	is	almost	

certainly a product team. Product teams focus on spe-

cific	business	outcomes	and	product	segments.

 2 Platform teams. These are introduced to provide

overarching support and standardization, enhancing

the efficiency and cohesiveness of product teams.

Typically, an organization has one platform team that

may grow into its own platform organization.

 3 Special teams. These emerge to address specific,

cross-cutting	objectives,	filling	any	gaps	in	the	organi-

zation	and	contributing	to	areas	that	require	a	broader,	

more integrated approach. An organization could have

as few as zero special teams at any given time, depend-

ing	on	their	business	needs.	

 Each type of team addresses a distinct need within the

organization, and their sequential introduction aligns with

the	natural	growth	and	diversification	of	the	organization’s	

responsibilities	and	objectives.

Tradeoffs in organization design

When	you’re	deciding	how	to	structure	and	staff	an	organiza-

tion,	tradeoffs	are	inevitable.	We	talked	above	about	how	this	

30

Business Outcomes Business Outcomes

works	at	the	individual	team	level,	but	similar	challenges	exist	

when designing the organization as a whole.

Where you land on these decisions will depend on the

stage of the company and the input of your stakeholders,

among other factors. As you design and evolve your orga-

nization, you’ll do well to ensure that you make intentional

decisions	about	where	you	want	to	land	in	each	of	these	areas.

• Autonomy vs. coordination. Autonomy can foster a

culture of innovation and quick adaptation, allowing

teams to respond rapidly to challenges and opportu-

nities. Excessive autonomy can lead to inconsistent

organizational	practices	and	difficulties	integrating	

work	from	different	teams.	Emphasizing	cross-team	

coordination ensures that all parts of the organization

are aligned and moving in the same direction. Still, it

has the potential to slow down some decision-making

processes	and	stifle	innovation	and	ownership	at	the	

team level.

• Specialists vs. generalists. Specialists are essen-

tial	for	tackling	complex,	niche	problems.	A	team	

composed solely of specialists might struggle with

flexibility	and	cross-functional	tasks.	In	contrast,	

generalists can work across various domains, provid-

ing	the	team	with	greater	versatility,	but	they	may	lack	

the in-depth knowledge needed for certain tasks.

• Centralized vs. distributed decision-making.

Centralized	decision-making	ensures	a	unified	strate-

gic direction and consistency in processes. However,

it	can	lead	to	decision-making	bottlenecks	and	a	

disconnection from the on-the-ground realities faced

by	teams.	Distributed	decision-making	empowers	

31

Business Outcomes

teams, allowing for faster responses and a greater

sense	of	ownership	over	outcomes.	Yet,	without	

sufficient	coordination,	this	can	lead	to	a	lack	of	

strategic alignment and varying approaches to similar

problems	across	the	organization.

• Short-term delivery vs. long-term sustainability.

Prioritizing short-term delivery can achieve quick

market	gains	and	customer	satisfaction,	but	it	may	

come	at	the	cost	of	accumulating	technical	debt.	

Conversely,	focusing	on	the	long-term	sustainability	

of	the	architecture	ensures	a	robust	and	scalable	

platform	but	could	delay	immediate	product	

deliverables.

• New features vs. maintenance. New features keep

the	product	competitive,	but	focusing	solely	on	new	

development can neglect the necessary improvement

and maintenance of existing features, potentially

impacting	reliability	and	customer	satisfaction.

• Large vs. small teams. Larger teams can manage a

wider	range	of	tasks	and	bigger	projects	but	may	face	

challenges with agility and internal communication.

Small	teams,	known	for	their	agility	and	effective	

communication, can quickly adapt and innovate

but	may	be	limited	in	the	scale	of	projects	they	can	

effectively	manage.

• New tech vs. existing solutions. New technologies

can	offer	strategic	advantages	and	long-term	

benefits,	positioning	the	company	at	the	forefront	

of innovation. However, they come with risks and

uncertainties. On the other hand, existing, proven

32

Business Outcomes Business Outcomes

technologies	provide	stability	and	predictability	but	

may lack the advantages of newer solutions. (When in

doubt,	choose	boring	technology.)

The	decisions	you	make	here	don’t	have	to	be	permanent	

ones; you’re going to get some things wrong, and decisions

that	were	correct	before	will	turn	wrong	over	time.	Don’t	stick	

a	firm	stake	in	the	ground	when	deciding	on	these	tradeoffs.	

Instead,	identify	where	on	the	spectrum	you	want	to	be	for	

each category and determine how well you’re adhering to that

— and how well it’s serving you — over time.

Antipatterns for organization design

As	you	think	about	the	different	tradeoffs,	there	are	plenty	of	

antipatterns to avoid. Each of these antipatterns is a choice

that	very	smart	people	have	made	in	the	past,	but	we	recog-

nize	now	that	each	of	these	choices	sets	you	up	for	different	

kinds of struggles and failures.

• Frontend and backend teams. Most customer-facing

features	require	both	frontend	and	backend	work.	

Dividing teams along these lines leads to a lack of

collaboration,	understanding,	and	ownership	among	

different	parts	of	the	product	development	process.	

This separation often results in challenges with

integrating	the	frontend	and	backend	aspects	of	a	

project, typically leading to competing prioritization

decisions	by	the	different	teams.	

• Multiple teams sharing a backlog. Many engineers

working	from	a	single	shared	backlog	can	lead	

to prioritization issues, reduced ownership, and

decreased	clarity	on	individual	contributions.	When	

33

Business Outcomes

too	many	people	are	involved,	it	becomes	challenging	

to	manage	dependencies	and	coordinate	effectively,	

leading	to	bottlenecks	and	slowdowns.	Additionally,	

this	setup	can	dilute	responsibility	and	accountability,	

as	team	members	may	not	feel	directly	connected	to	

the outcomes of their work.

• Too many small teams. While small teams are often

more	agile	and	efficient,	over-fragmenting	the	

engineering organization into too many tiny teams

can	lead	to	problems	with	coordination,	culture,	

alignment, and consistency. A new team may need

to	be	tiny	at	first,	but	teams	of	five	to	seven	software	

engineers	will	be	healthier	and	more	sustainable	over	

the long term.

• Delivery teams. These are teams that are solely

responsible	for	delivering	work	specified	by	people	

outside the team. Without integrating cross-func-

tional perspectives, they will tend to ship products

that	are	technically	sound	but	fail	to	meet	user	needs	

or	business	objectives.	

• Lack of clear areas of ownership. When there is

ambiguity	about	who	owns	specific	parts	of	the	

product	or	codebase,	it	can	lead	to	neglect	of	certain	

areas, especially maintenance and quality assur-

ance, creating confusion during decision-making

processes.

Roles and reporting lines

Typically, software engineers report to a line engineering man-

ager. These leaders are familiar with the engineers’ day-to-day

34

Business Outcomes Business Outcomes

work, providing guidance, oversight, and support. In a small or

shallow	organization,	there	could	be	very	few	additional	layers	

between	that	line	manager	and	the	CEO	or	CTO.	In	a	more	

mature or structured environment, more roles start to emerge.

Not	every	organization	will	need	every	role,	but	these	broad	

distinctions	become	fairly	typical	over	time,	and	each	has	a	

part	to	play	in	an	organization’s	effectiveness	effort.

• Senior software engineers. They’re usually expected

to	take	projects	from	start	to	finish,	alleviating	

the team leads or managers from micromanaging

individual projects. This approach allows leaders to

focus more on team dynamics and strategic planning.

Importantly, they rarely work alone; their leadership

comes	from	being	a	force	multiplier	for	the	team	by	

guiding and mentoring others. They advise junior

team	members,	enhance	team	skills	and	cohesion,	

and play a critical role in maintaining high quality

standards.

• Staff+.	Staff+	engineers	function	as	leaders	within	

the	larger	engineering	organization	but	without	direct	

people	management	responsibilities.	Their	scope	

typically	extends	beyond	a	single	team,	setting	oper-

ational standards and guiding architecture across a

portion	of	the	group	or	organization.	Staff+	engineers	

set operational standards and guide architectural

decisions	that	ensure	scalability	and	efficiency.	They	

influence	technical	strategy,	align	it	with	business	

goals, and mentor other engineers, elevating the

overall technical skills of the organization. Often,

they report to a manager at a higher level than the

manager of the team they work most closely with.

35

Business Outcomes

• Line engineering managers. Successful people in

this role have a strong understanding of software

development, usually through several years of

hands-on experience. They ensure that the team

has	what	it	needs	to	be	successful	and	coordinate	

with other teams in the organization. Through one-

on-ones and other techniques, they use coaching

and performance conversations to support career

progression while often still providing technical

guidance.	They	may	partner	with	a	Staff+	engineer	

for technical guidance as well. This role is pivotal in

organizations where individual teams require focused

managerial and technical support, ensuring that

the	technical	execution	and	team	well-being	are	

prioritized

• Senior managers and directors. Typically, they’re

responsible	for	several	teams,	with	line	engineering	

managers reporting to them. As part of managing

their	organization,	they’re	likely	responsible	for	

headcount,	budget	planning,	performance	manage-

ment, organization design, cross-team alignment,

higher-level goal setting, inter- and intra-organization

optimizations, and so much more — the role can vary

greatly	by	company	stage	and	size,	and	even	within	

internal organizations. People in this role typically

aren’t hands-on in day-to-day software engineering

work; indeed, a major challenge is to stay connected

to the realities of that work while doing the rest of

the	job.	They	tend	to	report	to	senior	directors,	a	vice	

president, a head of engineering, or sometimes the

CEO or CTO.

36

Business Outcomes Business Outcomes

• VPs and CTOs. VPs	tend	to	be	execution-oriented,	

while CTOs focus on providing a strategic and

technical vision. Depending on the organization, the

overall engineering vision and strategy usually come

from someone in one of these roles, and the vision

they provide aligns with the company’s long-term

goals. Either of these roles can lead an engineering

organization, make high-level decisions on technol-

ogy and product development, and ensure that the

engineering team scales in line with the company's

growth. Each role is crucial in fostering innovation,

driving technical excellence, and ensuring that

engineering	practices	contribute	effectively	to	the	

company's	objectives.

Product	roles	also	have	a	tremendous	influence	on	an	

effectiveness effort. These roles often report separately

from	engineering	roles,	but	individual	product	managers	and	

product designers are assigned to individual teams.

Teams as a strategic investment

High-performing teams are an exception, not the rule. They

don’t just happen — they require time to form, good leader-

ship to maintain motivation, and clear areas of ownership and

autonomy.

Not long ago — and certainly some companies still do this!

— teams were organized around a set of features that needed

to	be	built.	Team	members	had	input	on	the	technical	imple-

mentation	but	little	involvement	in	defining	how	the	feature	

would	work,	and	often	sought	(and	received)	little	feedback	

on whether their work had the desired outcome. The work was

the outcome.

37

Business Outcomes

In contemporary thinking, teams are conceived not just as

functional	units	executing	predetermined	tasks	but	instead	as	

strategic investments. This shift recognizes teams not as stops

on	an	assembly	line	but	rather	as	fun-

damental	drivers	of	business	success,	

where their focus is on understanding

users, not just on the features or prod-

ucts they develop.

Once again, empowered teams — a

table	stake	we	mentioned	in	Chapter	1	

— are essential to making this work, and

those	teams	need	to	be	held	account-

able	for	the	outcomes	they	achieve.	

Teams that can adapt and respond to new information and

changing	conditions	will	perform	best	in	this	scenario.

Investing in teams means more than just providing tasks;

it	involves	nurturing	their	growth,	capabilities,	and	cohesion.	

This includes:

• Skill development. Continuous learning and

development opportunities help teams stay ahead of

the	curve,	both	technically	and	in	terms	of	industry	

knowledge.

• Cultivating culture. A strong team culture that

fosters	collaboration,	innovation,	and	a	sense	of	

ownership is crucial. The team’s values and norms

should align with those of the larger organization.

• Resource allocation. Ensuring teams have the

necessary resources — from tools and technology to

sufficient	staffing	—	is	a	key	aspect	of	treating	the	

team as an investment.

High-performing
teams require
time to form, good
leadership to
remain motivated,
and clear areas
of ownership and
autonomy.

38

Business Outcomes Business Outcomes

Again, the team, not the individual, is the fundamental

unit of an engineering organization and a powerful lever for

improving	an	organization’s	effectiveness.	Designing	an	out-

come-oriented organization demands that you consider team

and	organization	shape,	as	both	influence	how	effectively	work	

gets done.

Balancing engineering
investments
In 2020, Matt Eccleston,	a	former	Dropbox	VP	of	Engineering,	

spelled	out	a	framework	for	balancing	and	budgeting	engi-

neering resourcing. Our adaptation of this is what we call

the Balance Framework. The Balance Framework is a model

for	understanding	the	distribution	of	an	engineering	orga-

nization’s	efforts.	It	categorizes	the	organization’s	work	into	

four main areas: 1 new things (creating new features or

services), 2 improving things (enhancing current features,

services,	and	business	processes),	 3 keeping the lights on

(KTLO) (maintaining existing systems and services), and
 4 productivity work (making it easier to get work done).

One of the most potent aspects of the Balance Framework

is	its	ability	to	create	a	shared	language	for	people	to	use	

across various organizational roles, such as engineering,

product, and senior leadership. This shared language allows

for	improved	communication,	aligning	objectives,	prioritizing	

work,	and	tracking	progress	more	efficiently.

Investing in teams means more than just
providing tasks; it involves nurturing
their growth, capabilities, and cohesion.

39

Business Outcomes

LET’S LOOK AT EACH CATEGORY MORE CLOSELY:

1 New things. Developing new features, products, or ser-

vices. This represents innovation, exploring new market

opportunities,	and	expanding	product	off	erings.	

2 Improving things. Enhancing current features, ser-

vices,	tools,	and	business	processes.	This	could	be	

optimizing	a	feature	for	better	user	experience	or	

revamping a service for improved performance.

3 Keeping the lights on. Keeping existing systems run-

ning	eff	ectively	and	eff	 iciently.	This	includes	bug	fi	xes,	

system	maintenance,	and	dealing	with	technical	debt.	

4 Productivity work. Improving skills, optimizing work-

fl	ows,	upgrading	tools,	and	creating	an	environment	

that	allows	the	team	to	work	at	its	best.	

THE BALANCE

FRAMEWORK

Improving things

Customer requests,
performance improvements,
reliability, and usability

Productivity

Developer tooling,
infrastructure improvements
enabling future growth

New things

Work toward your business
objectives with new products,
features, or integrations

Keeping the lights on

Keeping the current product
operational (bugs, troubleshooting,
depency updates, routine tasks)

40

Business Outcomes Business Outcomes

Investing too heavily in any one category can lead to

problems.	For	example,	focusing	too	much	on	new	things	at	

the	expense	of	KTLO	could	result	in	system	instability	and	

a	decreased	ability	to	deliver	work	due	to	technical	debt.	

Conversely, excessive focus on KTLO might result in fewer

new things and improvements, leading to a stagnating product

and missed opportunities for innovation and improvement. A

healthy	blend	tends	to	include	at	least	10%	for	productivity	

work	and	between	10%	and	30%	for	KTLO	work.	The	remain-

ing	time	investment	will	depend	on	the	nature	of	your	business	

and your product strategy.

Balancing at the team level

Never	forget	that	a	quarter,	a	half,	and	a	year	all	have	a	finite	

number	of	days	in	them.	In	a	quarter,	there	are	13	weeks,	or	

65	working	days.	When	thinking	about	what	a	team	can	get	

done,	remember	that	some	percentage	of	that	time	needs	

to	be	held	back	for	slack	time	(to	address	KTLO	and	reactive	

work),	vacation	time,	and	holidays.	A	team	of	five	that	starts	

with	a	theoretical	325	available	engineering	days	in	a	quarter	

may	end	up	having	as	less	than	half	of	that	time	available	to	

invest in the new things and improving things category.

With	 that	 in	mind,	 teams	 should	also	be	 thoughtful	

and	intentional	about	how	they	invest	their	time	in	differ-

ent	areas,	even	if	the	exact	breakdown	doesn’t	match	the	

A healthy blend tends to include
at least 10% for productivity
work and between 10% and 30%
for KTLO work.

41

Business Outcomes

organization-level investment levels. Setting an investment

balance	intention	at	the	team	level	can	help	make	future	deci-

sions more straightforward.

Fostering collaboration
with the Balance Framework

The Balance Framework emphasizes that improving productiv-

ity	is	a	collaborative	effort	among	engineering,	product	man-

agement, and product design. It creates a shared language

between	the	diverse	roles	involved	in	product	development,	

from software engineers to the CFO.

It also empowers engineers to advocate for the kind of

productivity work that often goes overlooked and understand

the	value	of	the	new	things	they’re	building.	A	specific	alloca-

tion for improvements allows product managers and designers

to	make	strategic	near-term	investments	that	will	pay	off	in	

the long run instead of always prioritizing shiny new features.

All this ensures that customer-reported issues are addressed

while fostering a sense of ownership over the product among

engineers, promoting a more engaged team.

Other	stakeholders	benefit	too.	Finance	can	use	the	

information for forecasting and reporting. Given competing

priorities, sales and marketing can use this information to

understand how much feature development they can expect.

In a smaller organization, conversations around impact

and priorities can happen organically; in a larger one, whole

departments might exist for each role, making communica-

tion more challenging. Having a standard language through

the Balance Framework saves you the pain of unintended

miscommunication	and	helps	you	align	priorities	between	

stakeholders.

42

Business Outcomes Business Outcomes

Using the Balance Framework
to improve effectiveness

You	can	use	the	Balance	Framework	to	set	organizational,	

team, or even individual intentions around how time gets

spent,	as	well	as	to	give	business	leaders	the	visibility	they	

need	to	determine	where	engineering	effort	is	going.	

With the Balance Framework, you might set a goal for an

organization to reduce its KTLO investment from 40% to 20%

by	the	end	of	the	year	while	maintaining	or	improving	quality	

metrics.	Specific	teams	can	put	an	additional	20%	of	their	

efforts	into	productivity	by	addressing	technical	debt	and	

implementing automation. Product (improving things and new

things)	will	only	get	40%	investment	until	the	KTLO	burden	

diminishes;	the	product	team	buys	faster	feature	delivery	in	

the	future	by	accepting	slower	feature	delivery	today.

This example highlights essential tensions in software

engineering,	mainly	because	you	always	have	only	100%	to	

spend. If the team previously spent 0% of their time on the

productivity improvements category, then that 20% has to

come from the other three categories. In this example, prod-

uct	work	initially	got	60%	of	the	organization’s	attention;	

dropping	that	to	40%	will	hurt	a	bit.

The main challenge of the Balance Framework is that it

requires	you	to	adopt	a	taxonomy	when	labeling	work	across	

your engineering processes so that you can associate each

unit of work with a Balance Framework category. The easier

you	make	it	for	engineers	to	label	their	work,	the	more	likely	

you	will	get	trustworthy	data.	You	may	want	to	adjust	the	exact	

classifications	—	for	example,	it	may	be	helpful	to	differentiate	

productivity improvement work from feature improvement

work	—	but	try	to	keep	it	to	just	a	handful	of	adjustments.

43

Business Outcomes

Once	the	data	starts	to	flow,	you	can	also	begin	to	use	it	to	

set team and individual intentions. For example, you can iden-

tify whether one person on your team is doing all the KTLO. If

so,	it	may	become	a	team	or	individual	priority	to	spread	that	

burden	more	evenly.

What to do when you’re
drowning in KTLO
If	you’re	dealing	with	a	substantial	amount	of	KTLO	work,	it’s	

a clear sign that something needs to change. KTLO tasks are

those necessary to maintain the existing systems and pro-

cesses, and while they are essential, excessive KTLO can limit

a	team’s	ability	to	innovate	and	deliver	new	value.

You	can	employ	a	few	approaches	if	a	team	is	swamped	

with KTLO work.

• Prioritize and delegate. Not all KTLO work is

equally important. The team should take time

to evaluate their KTLO tasks and prioritize them

based	on	their	business	impact.	The	low-priority,	

non-strategic	tasks	could	be	automated,	out-

sourced, or temporarily ignored, allowing the team

to focus on higher-impact tasks.

• Invest in automation. If	a	significant	proportion	

of KTLO tasks are routine and repetitive, the

team could invest in automation. This may

involve using existing tools or developing custom

solutions. Automating repetitive tasks can free

up	significant	time,	allowing	the team to focus on

more strategic work.

44

Business Outcomes Business Outcomes

• Reduce technical debt. Too much KTLO work

could	be	the	result	of	substantial	technical	debt.	

For	example,	a	codebase	that’s	full	of	one-off	

exceptions for individual customers can make any

change	risky;	this	variance	should	be	managed	

via	configuration,	not	code.	Regularly	allocat-

ing	time	to	reduce	technical	debt	—	through	

refactoring, improving test coverage, updating

documentation, etc. — can reduce the amount of

KTLO work over time.

• Reconsider the product roadmap. If KTLO

tasks	are	hindering	progress,	it	might	be	time	

to revisit the product roadmap. Balancing new

features and improvements against maintenance

tasks is crucial to ensure the team can deliver on

strategic	objectives	over	the	long	term.

• Ask for more resources. If KTLO tasks are

overwhelming	and	the	strategies	above	aren’t	

enough, the team might need more help. This

could	mean	hiring	more	team	members,	reallo-

cating resources from other parts of the organi-

zation, or using third-party service providers.

When	you’re	inundated	with	KTLO,	it	can	be	tempting	to	

take shortcuts or make hasty decisions to lighten the load.

Victory	will	be	fleeting	if	you	choose	tactics	like	working	longer	

hours	or	taking	solely	a	firefighting	approach.	Quick	“fixes”	

often	exacerbate	the	very	issues	they	aim	to	solve,	adding	

to	technical	debt	and	leading	to	burnout	among	software	

engineers.

Similarly, prioritizing new features at the expense of

KTLO tasks, or hastily outsourcing these tasks without proper

45

Business Outcomes

oversight,	can	create	more	problems	down	the	line.	The	key	

to	effectively	managing	KTLO	work	isn’t	simply	to	eliminate	

KTLO	tasks	but	to	approach	them	strategically,	keeping	in	

mind	their	impact	on	long-term	product	goals	and	the	well-be-

ing of the team.

Setting priorities
Every engineering organization, no matter its size, struggles

with managing competing requests from stakeholders. It’s

common to see an organization trying to decide among very

different	types	of	work.	For	example,	finance	wants	engineer-

ing to cut cloud spend, product wants

engineering	to	build	things	that	drive	

customer value, and engineering

wants engineering to pay down its

technical	debt.	

With a poor prioritization strategy

— or none at all — you end up with

multiple competing high-priority

goals.	In	the	above	scenario,	if	you	

choose	to	say	yes	to	all	three	things,	it’s	entirely	possible	that	

none	of	them	actually	gets	done	because	engineering’s	finite	

time is split across three major projects when there is only

room	for	one.	Not	only	is	this	bad	for	the	business,	but	it’s	also	

painful for the engineers who are trying to do all the work.

Quickly, you’ll see signs of:

• Priority fatigue/burnout. Engineers will no longer

rally around top priorities even when needed since

everything is a top priority. Instead, they just “do some

work and go home.”

With a poor
prioritization
strategy — or none
at all — you end
up with multiple
competing high-
priority goals.

46

Business Outcomes Business Outcomes

• Hiding work. Engineers will start hiding work from

product management or including unnecessary work

in product increments, e.g. “We can't do this one-

week thing unless we spend two weeks refactoring the

whole thing.”

• Withholding feedback on priorities. When engineers

feel like prioritization is poor and nothing is changing,

they	often	stop	giving	feedback.	Leadership	will	only	

see	the	effects	of	poor	prioritization	on	teams	and	

struggle to understand the underlying issues that led

to	those	effects.

Any	one	of	these	things	can	be	poison	to	an	effectiveness	

effort	—	they	will	make	meeting	the	table	stakes	mentioned	in	

Chapter	1	almost	impossible.

Setting priorities is more than just ranking a list of tasks in

order of importance. True priorities should highlight the areas

where	effort	will	have	the	most	impact	on	the	organization’s	

goals.

When something is a priority, that doesn’t necessarily

mean that every engineer is continually engaged in working

toward that priority. Rather, saying something is a priority

implies	a	strategic	alignment	of	choices,	where	team	members,	

when	presented	with	options,	prioritize	work	that	contributes	

to these key areas. When priorities are clear, the organization

focuses on strategic outcomes while day-to-day operations

continue without major disruption.

At	every	level	of	the	business,	priorities	must	be	informed	

by	product	and	business	strategy.	While	empowered	teams	

should	be	setting	their	own	local	priorities,	these	priorities	must	

be	informed	by	the	product	and	business	strategy	—	and	vice	

47

Business Outcomes

versa.	Effective	prioritization	requires	knowledge	and	insights	

to	flow	in	both	directions,	so	team	input	should	also	inform	

priorities	at	the	group,	organization,	and	even	business	levels.

OKRs: A framework
to communicate priorities
Priorities don’t matter much if they’re not communicated

clearly.	The	Objectives	and	Key	Results	(OKR)	framework,	

described	by	former	Intel	 leader	John Doerr	 in	his	book	

Measure What Matters, has emerged as a common tool for

communicating priorities across an organization and tracking

progress	on	those	priorities.	However,	the	effectiveness	of	

this	approach	varies	across	different	levels	of	the	business	

and depends a lot on making sure that the overhead doesn’t

outweigh	the	benefits.	

We	like	to	think	of	OKRs	as	a	“high-five”	standard;	if	we	

accomplish this, will the organization, group, or team have a

moment	when	they	all	high-five	each	other	(at	least	metaphor-

ically)?	OKRs	should	be	achievable	but	ambitious.	They	should	

be	based	on	outcomes,	not	a	list	of	tasks	to	be	completed	or	

outputs	to	be	created.

For	example,	consider	a	business	objective	to	“hold	the	

line	on	churn,”	with	key	results	of	95%	net	revenue	retention	

across	the	customer	base	and	99%	retention	among	the	top	

100	customers.	Just	like	any	good	objective,	it	doesn’t	tell	

you how to achieve these things — that falls to the teams and

groups across the entire organization. It also doesn’t tell you

who	will	do	the	work;	efforts	toward	business-level	objectives	

will often involve marketing, sales, product, and engineering

(at least).

48

Business Outcomes Business Outcomes

With this in mind, OKRs immediately present the challenge

of managing cross-team and cross-organization work. We’ll

discuss	this	challenge	in	more	detail	below,	but	at	a	high	level,	

what we’ve seen work well is a system where the engineering

organization	also	has	OKRs,	and	those	OKRs	closely	reflect	

company OKRs. Within an engineering organization, each

objective	and	key	result	may	be	owned	by	a	group	or	team.

So,	in	the	above	example,	an	engineering	organization	

might set OKRs such as the following.

• Objective: Hold the line on churn

• 	Reach	five	9s	of	API	uptime	in	a	running	30-day	
window to address frequent user complaints.

• Measure and improve ongoing engagement with
users via messaging apps and emails.

• 	Support	a	+20%	YoY	improvement	in	net	revenue	
retention among the top 100 customers.

For some teams in the organization, these OKRs could

directly intersect with their area of ownership, and they

should prioritize their work accordingly. Still, OKRs should

never create an all-hands-on-deck situation; part of using

OKRs	responsibly	is	accepting	and	explicitly	acknowledging	

that they will never cover the full scope of work that should

be	happening.

A	clever	senior	leader	may	share	a	list	of	OKRs	but	then	

declare, “Security is always our top priority” (or cost cutting,

or KTLO, or something else that didn’t end up on the OKR

list). Sometimes product and engineering will each come up

with	separate	OKRs.	If	you	have	two	lists	of	five	top	objectives,	

49

Business Outcomes

you	have	10	top	objectives.	There	must	be	one	short	list	at	the	

highest	level,	and	everything	on	it	should	be	material	to	the	

success	of	the	business.	Otherwise,	every	level	below	has	to	

choose	who	to	please	and	who	to	offend.	

An	efficient	OKR	process	is	marked	by	minimal	overhead,	

with individual teams spending less than a week per quarter

on OKR-related tasks. While the OKR approach does require

aligning with other teams, the alignment process should not

be	about	crafting	a	perfectly	cascading	plan	across	the	orga-

nization	but	rather	about	ensuring	that	there	is	harmony	in	

direction and purpose.

As you evaluate OKR progress, watch out for “watermelon

status,” where the outward reporting of progress does not

match	the	actual	data,	indicating	a	disconnect	between	per-

ception	and	reality.	Keep	watch	also	for	objectives	that	focus	

on	an	output	or	checklist	vs.	a	specific	business	outcome.

OKRs	must	be	part	of	a	larger	discussion	involving	invest-

ment	balance	and	organizational	design.	Imposing	an	OKR	

process on a team that is under-resourced or misaligned

with	the	company’s	broader	goals	can	lead	to	frustration	and	

inefficiency.	Your	goal	should	be	integrating	OKRs	into	the	

organizational	fabric,	ensuring	they	complement	and	enhance	

the overall strategic direction and resource allocation without

becoming	a	source	of	debilitating	overhead.

Part of using OKRs responsibly
is accepting and explicitly
acknowledging that they will
never cover the full scope of
work that should be happening.

50

Business Outcomes Business Outcomes

At	the	business	and	organization	level,	OKRs	excel	in	

setting	clear	directions	and	establishing	priorities.	They	are	

designed	to	focus	on	a	few	crucial	objectives,	ensuring	a	

focused	effort	where	it	matters	most.	As	discussed	above,	

the	key	results	associated	with	these	objectives	steer	clear	of	

dictating the how, focusing instead on what the achievements

will look like upon completion.

Applying	OKRs	at	the	group	level	brings	challenges,	par-

ticularly in organizations where trust is low. There’s often a ten-

dency to develop group-level OKRs that cover every team, lest

some teams feel overlooked or undervalued. Furthermore, the

very structure of some organizations can make it challenging

to	establish	shared	objectives	that	resonate	across	all	teams.

TEAM-LEVEL OKRS

At the team level, OKRs are useful for communicating and

aligning with leadership and other teams, leaving the details

to	the	team	to	work	out	while	creating	visibility	for	leaders.	Be	

careful, though: the practicality of OKRs at the team level can

be	outweighed	if	you’re	spending	too	much	time	developing	

them.

Measurement paralysis is a frequent challenge, as a team

spends	time	figuring	out	how	to	measure	the	impact	of	an	

issue rather than simply resolving it. Another challenge of

OKRs at the team level is that they need to serve audiences

up, out, and down. Coming up with language that accurately

represents work to the team, its stakeholders, and its man-

agement	chain	can	be	(and	can	create)	far	more	trouble	than	

it’s worth.

Another	shortcoming	of	OKRs	is	that	the	“ambitious	but	

achievable”	standard	doesn’t	work	as	well	for	KTLO	work.	The	

51

Business Outcomes

OKR	framework	described	by	Doerr	excludes	this	kind	of	work,	

focusing	only	on	new	business	objectives.	When	OKRs	focus	

only on new work, a team or individual can end up in a situation

where their extremely necessary KTLO work is undervalued.

OKRs	also	don’t	include	reactive	work	—	the	stuff	that	

comes	up	that’s	difficult	to	predict	ahead	of	time.	This	could	

be	anything	from	a	security	issue	in	a	software	library	or	a	pro-

duction incident to a last-minute request from a VP to gather

some data.

Finally, don’t ask teams to create new OKRs every quarter

or on any particular cadence. At the team level, a light and

occasional	refresh	should	be	sufficient.	Otherwise,	team	

OKRs	often	become	more	like	to-do	lists	than	strategic	

objectives,	providing	little	value	as	a	communication	tool.	The	

time	invested	in	developing	and	tracking	these	OKRs	can	be	

extensive,	and	the	benefits	might	not	always	be	proportional.

A NOTE ON OKRS FOR PLATFORM TEAMS

Platform groups face a unique scenario when it comes to

OKRs.	These	groups	find	OKRs	most	beneficial	when	the	

group thinks of itself as owning a product rather than just

maintaining	a	set	of	services	or	capabilities.	

For more service-oriented teams, OKRs can feel irrele-

vant	because	much	of	their	work	tends	to	be	KTLO-shaped.	

Measurement paralysis is a
frequent challenge, as a team
spends time figuring out how to
measure the impact of an issue
rather than simply resolving it.

52

Business Outcomes Business Outcomes

Depending	on	their	nature,	platform	teams	may	be	a	case	where	

standard OKR practices don’t make much sense. Here and else-

where, in the interest of empowered teams, listen closely to the

team if it struggles to communicate its planned work this way.

Managing cross-team initiatives
One of the hardest prioritization challenges for a software

company is cross-team projects. It’s rarely convenient for

people across teams to suddenly work on the same thing

at the same time, especially if the value of that work to the

team’s users isn’t very clear. It’s imperative to keep people on

the	same	page	about	the	importance	of	the	project	and	to	

understand project progress across teams.

Successfully	and	predictably	leading	complex,	cross-cut-

ting initiatives in a software engineering organization requires

timely,	accurate,	trustworthy	data	about	the	work	that’s	being	

done toward completing the initiative. With that knowledge in

hand,	you	can	ensure	that	progress	is	made	with	a	reasonable	

scope	and	a	reasonable	amount	of	engineering	resources.

If things aren’t moving along as quickly as you’d hope,

there are a few common culprits you can look for and address.

• Doing too many things at once. When teams try

to handle too many tasks simultaneously, it leads

to interruptions and context switching, drastically

It’s imperative to keep people on the
same page about the importance
of the project and to understand
project progress across teams.

53

Business Outcomes

reducing	productivity	and	focus.	Team	members	

become	overwhelmed,	leading	to	a	decrease	in	

work quality and delays in project timelines. Teams

need	to	prioritize	tasks,	define	specific	focus	areas,	

and implement work-in-progress limits. Advocate

for	realistic	planning	based	on	the	team’s	scope	

and	obligations;	leaders	should	limit	the	number	

of initiatives a team is expected to work on at any

given time.

• Working on increments that are too large. Large

increments can extend development cycles,

reducing	the	team’s	ability	to	adapt	to	changes	

and	delaying	feedback.	This	approach	can	also	

overwhelm the team and make it challenging to

track	progress.	Teams	should	break	down	work	into	

small	increments	—	tasks	that	can	be	completed	

in one or two days. Smaller increments allow for

quicker	feedback,	easier	adjustments,	and	clearer	

demonstration of progress. Small increments are

also proven to increase overall throughput.

• Relying on individuals vs. the team. When an

initiative depends excessively on a single person,

bottlenecks	and	delays	arise	when	those	individu-

als	are	overloaded	or	unavailable.	This	pattern	also	

undermines	team	collaboration	and	knowledge	

sharing. Leaders at every level must encourage

a team-oriented approach where knowledge

and	responsibilities	are	shared.	Incorporate	

cross-training	and	collaborative	work	practices	to	

ensure the team can make progress even when key

individuals	are	absent.

54

Business Outcomes Business Outcomes

• Failing to incorporate new information. When a

team sticks too rigidly to a plan without adapting

to new information or changing circumstances,

you end up with outdated solutions and missed

opportunities. Promote and cultivate a growth

mindset, encouraging teams to revisit and revise

plans	as	new	information	becomes	available.

• Focusing on outputs over outcomes. When

initiatives are evaluated solely on outputs (like the

number	of	story	points	or	features	completed),	

it’s easy to lose sight of the actual goals of the

initiative, such as improving user satisfaction or

increasing sales. This misalignment can lead to

inefficiencies	and	time	spent	on	work	that	doesn’t	

contribute	to	the	objective.	Focus	instead	on	the	

outcomes the project is trying to achieve. Set clear

(preferably	user/customer-centric)	goals,	and	

measure progress toward them to ensure that work

aligns with the project’s desired outcome(s).

• Ignoring hidden work and KTLO work. Often,

there’s	significant	work	involved	in	maintaining	

existing systems that goes unnoticed or underes-

timated. Ignoring this aspect can strain resources

and impact the delivery of new projects. Account

for maintenance and operational work when

planning initiatives and adjust your expectations as

needed as the initiative proceeds.

55

Business Outcomes

What’s next?
In this chapter, we emphasized the strategic connection

between	software	development	and	business	objectives,	and	

highlighted the Balance Framework as a key tool for managing

resource allocation across near-term and long-term goals. We

also	explored	the	evolution	and	role	of	different	team	types	—	

product,	platform,	and	special	teams	—	in	effectively	handling	

organizational	complexity	and	driving	business	outcomes.	We	

looked	at	examples	of	tradeoffs	in	team	design	and	organi-

zational structure, and tactics for prioritizing and managing

cross-team	efforts.	

In	the	next	two	chapters,	we’ll	talk	about	developer	pro-

ductivity and developer experience — two sides of the same

coin	that	are	both	essential	to	a	successful,	sustainable	soft-

ware	development	organization.	Business	outcomes	will	suffer	

in	the	long	run	without	investment	in	both	areas.	

56

FURTHER READING

Accelerate: The Science of Lean Software and DevOps:

Building and Scaling High Performing Technology

Organizations,	by	Dr. Nicole Forsgren, Jez Humble, and

Gene Kim. A foundational read for understanding the

practices	and	capabilities	that	lead	to	high	performance	in	

software organizations.

Team Topologies: Organizing Business and Technology

Teams for Fast Flow,	by	Matthew Skelton and Manuel Pais.

A practical guide for designing team structures in software

organizations,	aligning	with	the	principles	of	eff	ective	

teamwork and outcome orientation.

Good Strategy Bad Strategy: The Diff erence and Why

It Matters,	by	Richard Rumelt.	An	essential	book	for	

understanding the fundamentals of strategic planning and

execution.

Mindset: The New Psychology of Success,	by	Carol S. Dweck.

Explores	the	concept	of	mindset,	distinguishing	between	a	

fi	xed	mindset	(believing	that	abilities	are	static)	and	a	growth	

mindset	(believing	that	abilities	can	be	developed	through	

hard work and dedication). Dweck argues that adopting a

growth	mindset	leads	to	greater	success	and	fulfi	llment

The Phoenix Project: A Novel about IT, DevOps, and Helping

Your Business Win,	by	Gene Kim, Kevin Behr, and George

Spaff ord.	A	highly	readable	novel	that	provides	insights	

into	DevOps	practices	and	the	importance	of	collaboration	

between	development	and	business.

Business Outcomes

57

Measure What Matters: How Google, Bono, and the Gates

Foundation Rock the World with OKRs,	by	John Doerr. Dig

into the OKR framework with its creator.

The Manager’s Path: A Guide for Tech Leaders Navigating

Growth and Change,	by	Camille Fournier. A practical guide

for engineering leaders, focusing on the challenges of

managing technical teams and projects.

Writing an Engineering Strategy,	by	Will Larson. Larson

writes extensively on engineering leadership, team orga-

nization,	and	technology	management,	providing	valuable	

insights for software development leaders.

lethain.com/eng-strategies/ lethain.com/eng-strategies/

Choose Boring Technology,	by	Dan McKinley. This post

advocates for the careful selection of technology in

business	and	introduces	the	concept	of	innovation	tokens,	

recommending that companies spend these sparingly and

only	on	technologies	that	provide	a	signifi	cant	advantage.	

mcfunley.com/choose-boring-technologymcfunley.com/choose-boring-technology

A Framework for Balancing and Budgeting Engineering

Resourcing,	by	Matt Eccleston. Discusses the importance

of	balancing	diff	erent	types	of	engineering	investments	to	

ensure	long-term	success	and	sustainability.	

medium.com/engineering-operations/a-frame-medium.com/engineering-operations/a-frame-

work-for-balancing-and-budgeting-engineering-resourc-work-for-balancing-and-budgeting-engineering-resourc-

ing-d0cce0e6911cing-d0cce0e6911c

Business Outcomes

Developer Productivity

Developer
Productivity

Build: Elements of an Effective

Software Organization

.
Effective software organizations

make fast and consistent progress
toward their goals.

59

Developer Productivity

T
he	unfortunate	reality	about	complexity	

in software is that if you just continue

doing	what	you’ve	always	been	doing,	

you’ll keep slowing down. When starting

a	fresh	project,	you’ll	be	surprised	by	

how much you can accomplish in a day or

two.	In	some	other,	more	established	environments,	you	could	

spend	a	week	trying	to	get	a	new	database	column	added.

Many things that slow down work are systemic, not individ-

ual. Even the most talented engineer might not fully under-

stand	how	much	time	is	wasted	when	work	is	bounced	between	

teams, half-completed features are shelved as priorities

change,	or	all	the	code	gets	reviewed	by	just	one	person.	It’s	

easy	to	think	you’re	solving	a	quality	problem	by	introducing	

code	freezes	and	release	approvals,	but	you	might	only	be	

making things worse.

In	this	chapter,	we’ll	 talk	about	some	of	the	perils	of	

measuring	productivity	before	we	move	on	to	the	mechan-

ics	of	making	it	happen	in	a	way	that’s	perceived	as	broadly	

beneficial.	

But	first,	let’s	talk	about	the	biggest	question	of	all:	what	is	

productivity, anyway?

Defining developer productivity
If	you	ask	a	group	of	seasoned	engineering	leaders	to	define	

developer	productivity,	there	will	 typically	be	no	unified	

answer.	For	the	purposes	of	this	book,	we	consider	developer	

productivity in the context of how organizations can minimize

the	time	and	effort	required	in	the	software	delivery	process	to	

create	valuable	business	outcomes.	We	will	focus	primarily	on	

60

Developer Productivity Developer Productivity

team-	or	service-level	delivery	and	eliminating	bottlenecks	—	

often	process	bottlenecks	—	in	the	software	delivery	process.	

We’ll also center our conversation on aggregate produc-

tivity	instead	of	the	efforts	and	contributions	of	individuals.	

A	healthy	productivity	effort	may	involve	automating	more	

parts	of	the	team’s	deployment	process,	addressing	flaky	tests	

that	cause	failing	builds,	or	just	getting	a	team	to	commit	to	

reviewing	open	pull	requests	before	starting	on	their	own	work.	

A	healthy	productivity	effort	should	not, on the other hand,

require	a	certain	number	of	pull	requests	for	each	engineer	

every	week.	That	approach	is	unlikely	to	create	business	value	

and very likely to create a toxic environment.

Productivity table stakes

Just	as	we	discussed	organizational	table	stakes	in	the	first	

chapter	—	empowered	teams,	rapid	feedback,	and	outcomes	

over output — there are three clear ways of working that you’ll

see on any highly productive team.

 1 Limited queue depth.	Controlling	the	number	of	

tasks	waiting	to	be	processed	(also	known	as	a	back-

log)	reduces	lead	times,	improves	predictability,	and	

smooths	the	flow	of	work,	thereby	increasing	efficiency	

and	reducing	the	risk	of	bottlenecks.

A healthy productivity effort
should not require a certain
number of pull requests for each
engineer every week.

61

Developer Productivity

 2 Small batch sizes. Smaller	batches	of	work	are	pro-

cessed	more	quickly	and	with	less	variability,	leading	

to	faster	feedback	and	reduced	risk.	This	approach	

enhances learning and allows for more rapid adjust-

ments to the product.

 3 Limited work-in-progress (WIP). By restricting the

number	of	tasks	in	progress	at	any	given	time,	teams	

can	focus	better,	reduce	context	switching,	and	accel-

erate the completion of tasks, thus improving overall

throughput.

LIMITED QUEUE DEPTH

It’s	okay	to	admit	it:	we’ve	all	added	a	task	to	a	backlog	with	a	

vague certainty that it will never get done.

Limiting queue depth means rigorously monitoring and

managing	the	number	of	tasks	awaiting	work.	This	involves	

implementing systems to track and control the queue size,

such	as	using	a	Kanban	board	to	visualize	work	and	enforce	

limits	on	the	number	of	items	in	each	stage.	This	principle	also	

means	you	can’t	let	backlogs	grow	unchecked,	as	this	can	lead	

to delays, rushed work, and increased stress.

Regularly review your work queues and adjust priorities

to	ensure	that	valuable	and	time-sensitive	tasks	are	getting	

addressed promptly. When you encourage teams to complete

current	tasks	before	taking	on	new	ones	and	use	metrics	

like	cycle	time	to	identify	bottlenecks,	you	can	significantly	

enhance	the	flow	and	efficiency	of	the	development	process.

Implementing this in practice usually means limiting the

number	of	tasks	awaiting	development,	review,	or	deployment	

at	any	given	time.	In	addition	to	providing	clarity	about	what	

62

Developer Productivity Developer Productivity

to work on next, this practice also dramatically improves the

predictability	of	delivery	once	something	reaches	that	initial	

awaiting development status.

SMALL BATCH SIZES

Breaking	down	large	projects	into	smaller,	more	manageable	

parts	allows	for	quicker	completion	of	each	part,	enabling	

faster	feedback	and	iterative	improvements.	For	instance,	

deploying completed tasks incrementally rather than releas-

ing a large set at once makes it easier to release more tasks in

a	given	period	of	time;	regressions	will	tend	to	be	small,	readily	

attributed,	and	readily	fixed	without	blocking	other	tasks.	

Large	batches	often	complicate	integration	and	make	it	

difficult	to	track	down	problems.	A	continuous	delivery	model,	

where small updates are released whenever they’re ready, is

a practical application of this principle. Encourage teams to

think in terms of small changes, which helps in managing risk

and	improving	the	ability	to	adapt	to	new	information.

LIMITED WIP

When you introduce and regularly monitor WIP limits, you

ensure	that	teams	focus	on	completing	ongoing	tasks	before	

starting	new	ones.	Overloading	team	members	with	multiple	

tasks leads to reduced focus and increased cycle times. A

culture where teams are encouraged to complete current

work	before	embarking	on	new	tasks	improves	focus,	reduces	

waste, and speeds up work delivery.

The	Kanban	process	embraces	this	explicitly,	although	

you	don’t	need	to	use	Kanban	to	follow	this	principle.	In	

that process, the team always focuses on completing the

63

Developer Productivity

team’s	in-flight	tasks	before	starting	new	ones	—	a	process	

sometimes	called	“walking	the	board	from	right	to	left”	—	to	

encourage	teammates	to	help	each	other	before	starting	a	

new	task.	Similarly,	scrum	limits	the	number	of	story	points	in	

an individual sprint.

In	the	absence	of	WIP	limits,	a	team	can	quickly	start	to	

juggle	more	than	it	can	reasonably	handle,	and	it’s	common	

for tasks to remain in progress for an extended period even

though	they	aren’t	being	actively	worked	upon.

Productivity vs. quality

A common misconception is that productivity and quality are

in tension. If your version of quality is to manually test every

change	you	make	and	test	your	whole	product	before	releasing	

it,	there	will	naturally	be	tension	between	the	two.	Any	scenario	

that relies heavily on manual testing often leads to the creation

of	more	processes	—	like	a	definition-of-done	checklist	on	

every pull request — further delaying time to value.

Fascinatingly,	one	of	the	best	ways	to	achieve	developer	

productivity involves improving the quality of your product

through automated testing. If you’re doing productivity right,

quality	will	tend	to	increase	over	time,	as	it	becomes	easier	to	

ship	smaller	changes	and	easier	to	roll	back	or	disable	features.	

A culture where teams are
encouraged to complete current
work before embarking on new
tasks improves focus, reduces
waste, and speeds up work delivery.

64

Developer Productivity Developer Productivity

Broadly, this involves four things.

• Make it easy to write tests. Most programming lan-

guages have somewhat standard testing frameworks,

and many software frameworks also come with clear

patterns for testing. Educate your engineers on how

to use these testing tools, making setup easy.

• Make it easy to get the right data. Tests shouldn’t

be	talking	to	production	to	get	data,	but	they	need	

data that’s a realistic simulation of the kind you’d see

in production. If you ask individual engineers to solve

the	data	problem	independently,	their	approaches	

will	be	varied	and	surprising	(and	often	quite	bad).

• Make it easy to manually test. While you want to

limit the amount of manual testing we’re doing,

there are lots of situations during the development

of	a	feature	where	you’d	like	to	be	able	to	kick	the	

tires and see how it works — for example, to show

something to a product partner or another developer

working remotely. Make it easy to interact with code

that’s	on	a	feature	branch.	

• Make it easy to release (and roll back) small

changes. One of the reasons teams get in a position

of doing a ton of pre-release manual testing is that

the release process itself is so onerous — and the

rollback	process	is	worse.	Individual	tasks	stack	up	

so that a release includes dozens of changes and

tens of thousands of lines of code. When you make

it trivial to release small changes, engineers will start

making smaller changes, leading to vastly less risk for

any given release.

65

Developer Productivity

If	you’ve	put	these	pieces	in	place	—	which	can	be	harder	

than it sounds — you’ve given your engineers powerful tools

that	make	their	job	easier,	and	you’ve	also	taken	a	big	step	

toward	a	better	product.	Add	a	ratchet	to	CI	to	make	sure	test	

coverage of your code only goes up, and incentivize writing

tests and sharing strategies within and across teams.

Once again, team structure (as discussed in Chapter 2)

comes	into	play.	Establishing	a	culture	of	(automated)	quality	

requires	that	your	teams	have	sufficient	domain	knowledge	in	

testing	methods	for	the	language	or	framework	being	used.	

Emphasizing automated testing also encourages you to limit

the complexity any single team has to deal with, so you in turn

limit the surfaces they need to test.

Frameworks for thinking
about productivity

There	are	a	couple	of	frameworks	that	can	be	useful	when	

considering	the	broad	topic	of	productivity.	

The DevOps Research and Assessment (DORA) frame-

work	has	become	a	standard	in	the	productivity	realm	for	a	

reason:	it	offers	a	set	of	valuable	metrics	that	shed	light	on	

where	engineering	teams	might	be	able	to	improve	their	soft-

ware	delivery.	By	providing	a	baseline	that	captures	a	team’s	

current	state,	DORA	sets	the	benchmark	for	your	team’s	pro-

cesses.	The	aim	isn’t	to	become	obsessed	with	numbers	but	

to	continually	evaluate	whether	you’re	satisfied	with	what	the	

numbers	are	telling	you.	

The success of the DORA framework — which originated

from	work	by	Nicole Forsgren, Jez Humble, and Gene Kim

—	lies	in	its	simplicity	and	ability	to	capture	various	aspects	

of software development through its four core metrics:

66

Developer Productivity Developer Productivity

 1 lead time for changes, 2 deployment frequency, 3 time

to restore service, and 4 change failure rate. These metrics

are in healthy tension with each other, which means improving

one could unintentionally lead to the degradation of another.

Of course, there are limitations to the DORA metrics.

While	they	offer	a	snapshot	of	your	team’s	performance,	they	

don’t explain why	something	might	be	off.	Nor	do	they	tell	you	

how to improve. The DORA framework is not a diagnostic tool;

it	doesn’t	point	out	bottlenecks	in	your	processes	or	identify	

cultural	issues	inhibiting	your	team’s	effectiveness.	It’s	much	

like having a compass — it will tell you what direction you’re

headed	in,	but	not	what	obstacles	lie	in	the	way	or	how	to	nav-

igate around them.

The	SPACE	framework,	developed	by	Forsgren along

with Margaret-Anne Storey, Chandra Maddila, Thomas

Zimmerman, Brian Houck, and Jenna Butler, grew out of

an attempt to create a more comprehensive tool to capture

the complex and interrelated aspects of software delivery

and operations. The goal was to create a model that would

acknowledge the competing tensions within software devel-

opment and use those tensions as catalysts for improvement.

Unlike	DORA,	SPACE	embraces	quantitative	and	quali-

tative	metrics,	identifying	five	critical	dimensions	of	software	

delivery and operational performance. The acronym stands

Unlike DORA, SPACE embraces
quantitative and qualitative
metrics, identifying five critical
dimensions of software delivery
and operational performance.

67

Developer Productivity

for satisfaction, performance, activity, communication and

collaboration,	and	efficiency	and	flow.

 S Satisfaction is	how	fulfilled	and	satisfied	engineers	

feel	about	their	work,	team,	tools,	and	culture.	It	also	

involves	evaluating	how	that	sentiment	affects	their	

engagement	and	fulfillment	based	on	the	work	they	do.

 P Performance evaluates whether the output of the engi-

neering organization has the desired outcome relative

to the investment. For example, what is the ROI of add-

ing 20 engineers to an organization? This is notoriously

difficult	to	measure	in	a	concrete	way	when	it	comes	to	

software engineering, meaning it’s more of a theoretical

concept	than	a	roadmap	to	specific	metrics.

 A Activity is a count of actions or outputs completed

while performing work. These include outputs like

design documents and actions like incident mitiga-

tion, as well as commits, pull requests, and code review

comments.

 C Communication & collaboration captures how people

and teams communicate and work together.

 E Efficiency & flow	captures	the	ability	to	complete	work	

or make progress on it with minimal interruptions or

delays, whether individually or through a system.

SPACE	offers	a	comprehensive	(though	fuzzy)	approach	to	

improving	productivity.	It	acknowledges	the	interplay	between	

different	aspects	of	software	development	and	provides	a	bal-

anced and holistic model for assessment and improvement.

Still,	it	is	just	a	framework	—	it	doesn’t	offer	any	specifics	about	

what exactly to measure or what “good” should look like.

68

Developer Productivity Developer Productivity

A	set	of	universal	metrics	can’t	fully	capture	the	effective-

ness	of	your	organization	because	organizations	vary	in	size,	

age, and culture. A mature, larger organization may have very

different	challenges	and	therefore	different	areas	to	focus	on	

for improvement compared to a smaller, newer organization.

This	means	that	while	DORA	metrics	are	incredibly	useful,	

they	must	be	complemented	by	other	qualitative	assessments,	

leadership insights, and perhaps more localized metrics that

take	into	account	the	unique	characteristics	of	specific	teams.

Unfortunately,	there	is	no	definition	of	productivity	that	

boils	down	to	keeping	an	eye	on	a	few	simple	metrics.	Measuring	

productivity is actually pretty hard.

Measuring productivity
Engineering organizations measure developer productivity

to	eliminate	bottlenecks	and	make	data-informed	decisions	

PRODUCTIVITY

S

P

A

C

E

Satisfaction

Performance

Activity

Communication & collaboration

Efficiency & flow

THE SPACE FRAMEWORK

69

Developer Productivity

about	resource	allocation	and	business	objective	alignment.	

Assessing productivity also provides insights into project pre-

dictability,	which	aids	in	planning	and	forecasting.	This	data	

acts as an early warning system to recognize when teams are

overburdened,	allowing	for	proactive	interventions	to	alleviate	

stressors	and	redistribute	workloads.

Even when the intent of measuring productivity is to

improve team and organizational effectiveness, individual

engineers	can	still	be	concerned	that	the	data	will	be	used	

against them. There’s a pervasive worry that these metrics

could translate into some form of individual performance

review, even when that’s not the intended use. This concern

can	contribute	to	a	culture	of	apprehension,	where	engineers	

might	be	less	willing	to	take	risks,	innovate,	or	openly	discuss	

challenges.	Any	perception	that	the	data	will	be	weaponized	for	

performance	purposes	can	doom	an	effectiveness	effort.	Say	

that you won’t use the data to target individuals and mean it.

Transparency in communicating the intent, scope, and

limitations of productivity metrics can go a long way in assuag-

ing these concerns. The metrics themselves likewise need

to	be	transparent.	By	involving	engineers	in	the	process	of	

deciding what to measure, how to measure it, and how the data

will	be	used,	you	can	mitigate	fears	and	build	a	more	coopera-

tive culture focused on continuous improvement rather than

punitive action.

Even when the intent of measuring
productivity is to improve team and
organizational effectiveness, individual
engineers can still be concerned that
the data will be used against them.

70

Developer Productivity Developer Productivity

Despite these risks, measuring productivity can foster

healthy	conversations	about	organizational	improvement.	

Metrics	can	highlight	inefficiencies	or	bottlenecks	and	open	

the	door	to	constructive	dialogue	about	how	to	solve	these	

problems.	This	becomes	especially	necessary	as	a	business	

grows	and	alignment	between	engineering	objectives	and	

broader	business	goals	becomes	more	challenging.	Software	

delivery	metrics	offer	a	standardized	way	to	communicate	the	

department’s status to other organizational stakeholders.

Choose your metrics carefully. Besides the risk of impact-

ing the psychological safety of your engineers, there are other

pitfalls	to	be	aware	of.	Don’t	rely	on	misleading	or	irrelevant	

metrics that provide a distorted view of what’s happening

within the teams (for example, pull requests per engineer or

lines of code committed). Poorly chosen metrics can lead to

misguided	decisions	and	even	undermine	the	credibility	of	the	

whole measurement process.

Consider, too, the incentives that are created when you

choose	metrics.	Overemphasizing	activity-focused	numbers	

might	lead	engineers	to	game	the	system	in	a	way	that	boosts	

activity	metrics	but	doesn’t	genuinely	improve	their	produc-

tivity	or	the	value	created	by	their	work.	This	can	result	in	a	

culture	where	superficial	metrics	are	prized	over	substantive	

improvements,	leading	to	technical	debt	and	inefficiencies.	

On the other hand, if your metrics encourage engineers to

submit	more	but	smaller	pull	requests,	you’re	likely	to	see	

benefits	in	quality	and	speed	of	delivery.

Cycle time

The work of delivering code changes for individual tasks is

often measured in terms of cycle time. This term comes from

71

Developer Productivity

manufacturing processes, where cycle time is the time it takes

to produce a unit of product and lead time is the time it takes

to	fulfill	a	delivery	request.

In software development, these terms are often mixed. For

most	features,	it	might	not	be	reasonable	to	track	the	full	lead	

time of a feature, as in the time from a customer requesting

a feature to its delivery. Assuming the team is working on a

product that’s supposed to serve many customers, it’s unre-

alistic	to	expect	features	to	be	shipped	as	soon	as	the	team	

hears the idea.

Although	we’re	reusing	manufacturing	terms,	remember	

that there is no unit of product in software development. A

car	can	only	be	sold	by	the	manufacturer	once.	The	work	that	

happens	in	an	engineering	organization	can	be	sold	over	and	

over again, with near-zero marginal cost for each additional

sale of the exact same code.

When	talking	about	cycle	time	for	code,	we’re	talking	

about	the	time	it	takes	for	code	to	reach	production	through	

development, reviews, and other process steps. Cycle time is

the	most	important	flow	metric	because	it	indicates	how	well	

your engine is running. When diagnosing a high cycle time,

your	team	might	have	a	conversation	about	topics	like	this:

• What other things are we working on?	Start	by	

visualizing all the work in progress. Be aware that your

issue	tracker	might	not	tell	the	whole	truth	because	

development teams typically work on all kinds of ad

hoc tasks.

• How do we split our work? It’s generally a good idea

to	ship	in	small	increments.	This	might	be	more	diffi-

cult	if	you	can’t	use	feature	flags	to	gradually	roll	out	

features to customers. Lack of infrastructure often

72

Developer Productivity Developer Productivity

leads	to	a	bad	branching	strategy,	with	long-lived	

branches	and	additional	coordination	overhead.

• What does our automated testing setup look like? Is

it easy to write and run tests? Can you trust the results

from the continuous integration (CI) server?

• How do we review code? Is only one person in the

team	responsible	for	code	reviews?	Do	you	need	to	

request reviews from an outside technology expert?

Is it clear who’s supposed to review code? Do we as a

team value that work, or is someone pushing us to get

back	to	coding?

• How well do team members know the codebase?

If	all	the	software	was	built	by	someone	who	left	the	

company a while ago, chances are that development

will	be	slow	for	a	while.

• Is there a separate testing/quality assurance stage?

Is testing happening close to the development team,

or	is	the	work	handed	off	to	someone	on	the	outside?

• How often do we deploy to production/release

our software? If test coverage is low, you might not

feel like deploying on Fridays, or if deployment is

not automated, you won’t do it after every change.

Deploying	less	frequently	increases	the	batch	size	of	

a deployment, adding more risk and again reducing

frequency.

• How much time is spent on tasks beyond writing

code?	Engineers	need	focus	time;	getting	back	to	

code	on	a	30-minute	break	between	meetings	is	

difficult.

73

Developer Productivity

There	are	perfectly	good	reasons	for	cycle	time	to	fluc-

tuate,	and	simply	optimizing	for	a	lower	cycle	time	would	be	

harmful.	However,	when	used	responsibly,	it	can	be	a	great	

discussion	starter.	Even	better,	consider	tools	that	help	visu-

alize	how	this	number	moves	over	time,	leading	to	a	deeper	

understanding of trends and causes.

Issue cycle time captures how long your epics, stories, and

tasks (or however you plan your work) are in progress. Each

team	splits	work	differently,	so	they’re	not	directly	compara-

ble.	If	you	end	up	creating	customer	value,	it	probably	doesn’t	

matter	whether	that	happens	in	five	tasks	taking	four	hours	

each	or	four	tasks	taking	five	hours	each.

Things don’t always go smoothly. When you expected

something to take three days and it took four weeks of grind-

ing, your team most likely missed an opportunity to adjust

plans	together.	When	you	find	yourself	in	this	type	of	situation,	

here are some questions to ask.

• What other things are we working on? Chances are

that your team delivered something, just not this

feature. Visualizing work and limiting work in progress

is a common cure.

• How many people worked on this? Gravitating

toward solo projects might feel like it eliminates the

communication overhead and helps move things

faster,	but	this	is	only	true	from	an	individual’s	

perspective, not the whole team’s.

• Are we good at sharing work?	Splitting	work	is	both	

a	personal	skill	and	an	organizational	capability.	

Engineers	will	argue	it’s	difficult	to	do.	Nevertheless,	

do more of it, not less.

74

Developer Productivity Developer Productivity

• How accurate were our plans? Suppose the scope of

the	feature	increased	by	200%	during	development.	

In	that	case,	it’s	possible	that	you	didn’t	understand	

the	customer	use	cases,	got	surprised	by	the	techni-

cal implementation, or simply discovered some nasty

corner cases on the way.

• Was it possible to split this feature into smaller but

still functional slices? Product management, product

design,	and	engineers	must	work	together	to	find	a	

smart	way	to	create	the	smallest	possible	end-to-end	

implementations.	This	is	always	difficult.

It feels great to work with a team that consistently deliv-

ers	value	to	customers;	that’s	what	you	get	by	improving	issue	

cycle time.

Deployment frequency

Depending	on	the	type	of	software	you’re	building,	“deploy-

ment”	or	“release”	might	mean	different	things.	For	a	mobile	

app with an extensive QA process, getting to a two-week

release cadence is already a good

target,	while	the	best	teams	building	

web	backends	deploy	to	production	

whenever a change is ready.

Deployment frequency serves as

both	a	throughput	and	a	quality	met-

ric. When a team is afraid to deploy,

they’ll do so less frequently. When

they	deploy	less	frequently,	bigger	deployment	batches	

increase	risk.	Solving	the	problem	typically	requires	building	

more infrastructure. Here are some of the main considerations:

Deployment
frequency
serves as both a
throughput and
a quality metric.

75

Developer Productivity

• If the build passes, can we feel good about

deploying to production? If not, you’ll likely want to

start	building	tests	from	the	top	of	the	pyramid	to	

test	for	significant	regressions,	build	the	infrastruc-

ture for writing good tests, and ensure the team

keeps writing tests for all new code. Whether tests

get	written	cannot	be	dictated	by	outside	stake-

holders;	this	needs	to	be	owned	by	the	team.

• If the build fails, do we know if it failed randomly

or because of flaky tests?	You	need	to	understand	

which tests are causing most of your headaches

so	that	you	can	focus	efforts	on	improving	the	

situation.

• Is the deployment pipeline to production

fully automated? If not, it’s a good idea to keep

automating it one step at a time. CI/CD pipeline

investments	start	to	pay	off	almost	immediately.

• Do we understand what happens in production

after deployment?	Building	observability	and	

alerting	takes	time.	If	you	have	a	good	baseline	

setup, it’s easy to keep adding these along with your

regular development tasks. If you have nothing set

up, it will never feel like it’s the right time to add

observability.

• Are engineers educated on the production

infrastructure? Some engineers have never

needed to touch a production environment. If

it’s	not	part	of	their	onboarding,	few	people	are	

courageous enough to start making improvements

independently.

76

Developer Productivity Developer Productivity

Some measures to avoid

Historically, agile teams have tracked velocity or story points.

Originally	meant	as	a	way	to	help	teams	get	better	at	splitting	

work	and	shipping	value,	these	units	have	been	abused	ever	

since as a way to directly compare teams and steer an organi-

zation	toward	output-based	thinking.

If	talking	about	story	points	helps	you	be	more	disciplined	

about	limiting	queue	depth	and	WIP,	go	for	it.	If	not,	don’t	feel	

bad	about	dropping	story	points	as	long	as	you	understand	

your cycle times.

Another traditional management pitfall is to focus on

utilization,	thinking	that	you	want	your	engineers	to	be	100%	

occupied. As utilization approaches 100%, cycle times shoot

up	and	teams	slow	down.	You’ll	also	lose	the	ability	to	handle	

any reactive work that comes along without causing major

disruptions to your other plans.

There’s a time and place to look at metrics around indi-

vidual	engineers.	In	very	healthy	environments,	they	can	be	

used to improve the quality of coaching conversations while

understanding	the	shortcomings	of	these	measures.	In	a	big-

ger	organization,	an	effort	to	focus	on	individual	metrics	will	

likely derail your good intentions around data-driven contin-

uous improvement. Engineers will rightfully point out how the

number	of	daily	commits	doesn’t	tell	you	anything	about	how	

good	they	are	at	their	jobs.	

The number of daily commits doesn’t
tell you anything about how good
engineers are at their jobs.

77

Developer Productivity

On	the	other	hand,	opportunities	abound	at	the	team	

level without shining a spotlight on any individual. Start your

conversations there instead.

Classic productivity challenges
Assessing productivity challenges in software engineering

teams	requires	looking	beyond	output	metrics.	Consider	these	

potential	culprits	when	trying	to	debug	a	productivity	issue:	

• Insufficient collaboration. Collaboration	among	team	

members	is	essential	to	improve	issue	cycle	time.	

Collaboration	allows	for	more	effective	planning	and	

prioritization, reducing multitasking and aligning the

team	on	common	goals.	Individual	efforts	may	seem	

efficient	in	the	short	term,	but	they	lack	the	collective	

intelligence and shared context that comes from

teamwork.

• Siloing. To	find	gaps	in	collaboration,	observe	your	

issue	tracker	to	see	if	projects	are	often	completed	by	

single	contributors.	A	lack	of	multiple	contributors	on	

larger	issues	indicates	a	problem.	Preventing	siloing	

may involve setting team agreements and ensuring

that	tasks	are	broken	down	sufficiently	for	multiple	

people to work on.

• Multitasking. Taking on too many tasks simultaneously

slows progress and creates waste. Track open stories,

tasks,	and	epics	against	the	number	of	engineers	

to gauge if there's an overload. Listen to the team’s

qualitative	feedback	on	how	they	feel	about	their	

WIP levels. Introduce WIP limits to align everyone on

completing	existing	tasks	before	starting	new	ones.	

78

Developer Productivity Developer Productivity

• Large increments. If projects often overrun, is the

team	trying	to	tackle	overly	large	problems?	Examine	

the time it takes to complete issues and look for scope

creep	to	indicate	planning	deficiencies.

• Planning quality. When scope creep is common,

consider	it	in	future	planning.	You	can	also	scrutinize	

long-running tasks to understand if they could have

been	broken	down	into	smaller,	more	manageable	

parts,	aiding	in	better	planning	for	future	issues.

• Cross-team sequencing. Even	in	the	best-designed	

organizations, it’s sometimes necessary for two teams

to work together to deliver customer value. Without

care and attention, these partnerships can struggle to

stay coordinated and deliver the right thing at the right

time for the other team to make progress.

It’s worth mentioning that scope creep isn’t necessarily a

bad	thing!	Mitigating	its	effects	should	be	focused	on	building	

in	time	for	learning,	feedback,	and	discovery;	reducing	scope	

creep	via	extensive	up-front	planning	and	specification	rarely	

produces good results.

Setting goals around productivity
If you’re just starting out on your productivity journey, goal-

setting can feel intimidating, especially if you’re trying to

prove	the	value	of	investing	in	this	area.	It	can	be	tempting	to	

go straight to frameworks like DORA and SPACE and try to

set goals around those concepts. Still, you’ll have more luck if

you identify a single opportunity from your conversations with

engineers	and	execute	on	it	(we’ll	talk	more	about	this	in	the	

final	chapter).	

79

Developer Productivity

For	example,	if	you	learn	that	CI	builds	fail	20%	of	the	

time due to seemingly random environmental issues, that’s a

concrete data point to measure and set a target around. Once

you hit the target, you can ensure you’ll notice if you exceed it

again.	Rinse	and	repeat	the	process	with	different	metrics	for	

different	kinds	of	improvements.	

Once	you’ve	embraced	that	pattern,	it’s	a	good	time	to	get	

DORA metrics in place if you haven’t already and start using

them to track the impact of improvements on teams and ser-

vices. In many ways, the core DORA metrics cover the activity

pillar	in	SPACE,	and	establishing	them	within	your	organization	

will quickly highlight potential opportunities.

As your productivity journey progresses, DORA metrics will

continue	to	be	useful	for	tracking	trends,	but	they	will	never	tell	

your whole productivity story. As you start to recognize themes

in	your	work	and	your	users’	reported	issues,	embracing	SPACE	

more	thoroughly	beyond	the	activity	dimension	will	make	

sense.	The	SPACE	framework	is	best	used	to	identify	various	

indicators of overall productivity, from OKR/goal attainment to

meeting	load	to	cross-team	collaboration	burden.	

Setting goals around SPACE pillars is also fraught; there’s

no	way,	for	example,	to	boil	efficiency	and	flow	down	to	a	single	

number.	On	the	other	hand,	SPACE	is	great	as	a	framework	to	

classify	problems	and	brainstorm	specific	metrics	you	might	

use to track trends and validate improvements.

Even under pressure, set goals
around potential valuable outcomes
from working on the problem, not on
a restatement of the problem itself.

80

Developer Productivity Developer Productivity

When it comes to setting metrics goals, you’ll sometimes

find	yourself	pressured	to	set	a	goal	before	you	know	how	you’re	

going	to	solve	the	fundamental	problem.	Even	under	pressure,	

set	goals	around	potential	valuable	outcomes	from	working	on	

the	problem,	not	on	a	restatement	of	the	problem	itself.	

Tools and tactics
Opportunities	to	improve	flow	exist	throughout	the	report-

ing chain and sometimes straight up to senior leadership.

Culturally, you need to get people at all levels to understand

and internalize the idea that interruptions for software engi-

neers	are	bad	and	should	be	minimized.

Of	course,	some	interruptions	are	inevitable,	but	many	

are imposed without recognizing the cost. Before you do any-

thing else with developer productivity, ensure there’s general

agreement on reducing interruptions (we’ll discuss this in more

detail in the next chapter).

At the team level, some interruptions are within the team’s

control and some are not. For example, suppose a code

change requires a review from another team. In that case, the

originating engineer is interrupted in their task until a person

from the other team accepts the change, and the originating

team may not feel in control of the situation in the meantime.

Nonetheless, plenty is in the control of individual teams:

what they prioritize, how they work

together, how they ensure quality,

how they automate tedious tasks,

and much more. Working agree-

ments and retrospectives are two

tools to use at the team level.

Some interruptions
are inevitable, but
many are imposed
without recognizing
the cost.

81

Developer Productivity

• Working agreements.	Team	members	agree	on	how	

they	want	to	work.	For	example,	team	members	could	

agree that they will release code at least once a day

and	that	reviews	should	be	completed	within	two	

hours of the assignment. By setting and monitoring

these agreements, the team can recognize where

they’re falling short and identify resolutions that

could	be	technical	or	process-focused.

• Retrospectives. Team	members	assess	the	work	of	

the previous period, how they worked together, and

how well they upheld the working agreements. They

then propose ideas and accept action items for future

iterations.

At	the	organizational	level,	we	start	to	talk	about	more	

ambient	interruptions,	which	no	one	is	responsible	for	but	just	

seem to appear. Tackling these interruptions is outside the

scope	of	any	one	team	unless	a	team	is	specifically	responsible	

for this kind of thing. This is where things get more challenging

but	also	more	rewarding;	solving	these	cross-team	problems	

tends to have more leverage than focusing solely on team-

level opportunities.

Working agreement

Feedback loop

Limit pull requests
in progress

When more than 5 pull requests are in progress at
once, Platform Team gets a notification in #platform

5 pull requests Set target
SUGGESTED CUSTOM

AN EXAMPLE WORKING AGREEMENT

82

Developer ProductivityDeveloper Productivity

Once	you	reach	a	certain	size,	it’s	useful	to	be	explicit	

about	who	is	accountable	for	developer	productivity	and	what	

it’s	like	to	build	software	at	your	company.	If	your	immediate	

response is “everyone,” either you are still a relatively small

organization	or	it’s	time	to	start	thinking	about	a	more	defin-

itive answer.

What’s next?
In this chapter, we discussed developer productivity, includ-

ing ways to quantify it and guidance on goal-setting in the

developer	productivity	space.	Next,	we’ll	talk	about	the	less	

quantifiable	but	equally	important	developer	experience.	

Developer ProductivityDeveloper Productivity

83

FURTHER READING

The Principles of Product Development Flow: Second

Generation Lean Product Development,	by	Donald G.

Reinertsen. A comprehensive guide on applying lean

principles to software and product development, enhancing

productivity	and	eff	 iciency.

The DevOps Handbook: How to Create World-Class Agility,

Reliability,	and	Security	in	Technology	Organizations,	by	

Gene Kim, Patrick Debois, John Willis, and Jez Humble.

Explains DevOps principles and practices, emphasizing

collaboration	and	productivity	in	software	development.

Making Work Visible: Exposing Time Theft to Optimize Work

& Flow,	by	Dominica DeGrandis. Focuses on the importance

of	making	work	visible	to	improve	productivity	and	eff	 iciency	

in software development.

The Mythical Man-Month: Essays on Software Engineering,

by	Frederick P. Brooks Jr.	A	classic	book	in	software	

engineering that discusses the challenges and pitfalls of

managing complex software projects.

The SPACE of Developer Productivity,	by	Nicole Forsgren et

al.	The	white	paper	that	describes	the	SPACE	framework	and	

the multidimensional nature of “productivity.”

queue.acm.org/detail.cfm?id=3454124queue.acm.org/detail.cfm?id=3454124

84

Developer Experience Developer Experience

4.
Developer
Experience

Effective software organizations
give engineers the support and tools

they need to feel engaged.

Build: Elements of an Effective

Software Organization

85

Developer Experience

I
n the previous chapter, we discussed how pro-

cesses impact developer productivity and how

we might measure it. Here, we look at the other

side of software development: developer expe-

rience.	We’ll	revisit	the	table	stakes	we	discussed	

in previous chapters and explore the aspects of

experience that we can measure and set goals around.

Measuring developer experience
Developer experience metrics are more qualitative than the

metrics	we	saw	in	Chapter	3.	For	example,	it’s	table	stakes	to	

capture employee satisfaction and engagement data. Still,

you’d	be	hard-pressed	to	suggest	that	this	is	quantitative	data;	

the	small	number	of	data	points	makes	the	error	bars	quite	wide.	

Suppose you want to understand how developer experi-

ence	affects	your	team’s	effectiveness.	In	that	case,	you	need	

to	evaluate	how	employees	feel	about	their	work	and	other	

factors	contributing	to	overall	job	satisfaction,	examining	the	

following points:

• Sources of frustration. Software engineers get

frustrated	when	their	flow	is	interrupted	—	sometimes	

by	a	tool,	sometimes	by	a	process,	and	sometimes	by	

another human. These frustrations add up, impacting

the engineer’s sense of satisfaction at getting things

done while also working against timely delivery.

Consider	making	it	easy	and	obvious	to	report	engineer	

frustrations to a ticket queue that you check regularly.

• Employee satisfaction and engagement. This

measures how content and committed employees are.

Regular employee surveys can help capture this data.

86

Developer Experience Developer Experience

Additionally, exit interviews and employee reviews

on	job	websites	can	offer	insightful	perspectives	on	

employee satisfaction and engagement.

• Employee turnover and regretted attrition. Employee

turnover refers to the rate at which employees leave an

organization. A high turnover rate, especially among

high-performing or recently hired individuals, could

indicate underlying organizational issues. An increase

in regretted attrition — the loss of employees that

the organization would have preferred to retain — is a

warning sign of poor organizational health.

• Leadership trust and communication effectiveness.

Leadership and organizational communication

effectiveness	can	significantly	impact	employee	satis-

faction. Regular surveys can gauge employees’ trust in

leadership	and	the	effectiveness	of	organization-wide	

communications, providing insight into potential areas

for improvement in leadership and communication

strategies.

Note that a couple of downsides plague each of these

metrics: the data arrives long after the damage is done, and

the data is noisy and nuanced.

Identifying improvements
The people whose productivity you are trying to improve are

the	best	source	of	information	about	what	needs	improving.	

You	can	better	understand	their	needs	by	approaching	this	on	

two fronts: talking to the users of your internal development

systems	and	collecting	data	about	tool	behavior	as	engineers	

go	about	their	day.

87

Developer Experience

Review the table stakes

We	discussed	organization-wide	table	stakes	in	Chapter	1	

(empowered	teams,	rapid	feedback,	and	outcomes	over	out-

puts),	and	we	discussed	team-specific	table	stakes	in	Chapter	

3	(limited	queue	depth,	small	batch	sizes,	limited	work	in	

progress).

All of these come into play in developer experience. The

absence	of	any	one	of	these	is	known	to	reduce	a	software	

engineer’s	satisfaction	and	engagement	with	the	job.	

As a leader, you need to honestly evaluate where your team

and/or organization stands regarding this must-have list. If any

of these ways of working are missing or on shaky ground, you

(and your leadership) must acknowledge that there’s a ceiling

on the improvements you can make until that changes.

Talk to your users

The	phrase	“talk	to	your	users”	may	be	unexpected	here,	but	

it’s	a	surprisingly	helpful	framing.	Your	engineering	colleagues	

are	your	users,	and	your	product	is	effectiveness.	As	with	the	

real-world users of your company’s product, talking to your

internal	users	can	be	a	source	of	powerful	insights.	This	can	

take a few forms.

Have as many in-person conversations with small groups

of	engineers	—	including	both	veterans	and	new	hires,	product	

and	platform	teams	—	as	you	can	manage.	You	could	do	this	

via	a	survey,	but	have	at	least	some	of	these	conversations	in	

person with a few teams; that environment tends to generate

usefully divergent ideas.

88

Developer Experience Developer Experience

YOU CAN USE PROMPTS LIKE THESE:

• What	could	we	improve	about	your	tools?

• What’s an annoyance for engineers today that could

become	a	real	risk	in	the	future?

• What would help the company learn more quickly

through	rapid	feedback?

If	you’ve	established	a	high-trust	environment,	go	a	step	

further	and	shadow	engineers	while	they	do	their	job.	You’ll	

be	amazed	at	the	workarounds	you	never	knew	people	were	

employing and the things you didn’t realize people were put-

ting up with.

Many or even most of the ideas you’ll come across will

have	technical	solutions,	but	don’t	tune	out	people,	processes,	

and political challenges that merit different approaches.

Increasing engineering leverage without spending engineer-

ing	time	could	be	a	huge	win.

Collect empirical data

Your	users	will	suggest	lots	of	opportunities	for	improvement	

—	so	many,	in	fact,	that	you’ll	have	difficulty	choosing	from	

among	them,	and	the	initial	list	will	feel	infinite.	This	is	when	it’s	

essential to have quantitative data to help guide your prioriti-

zation and validate the qualitative stories you hear. Be honest

about	what	you	can,	can’t,	will,	and	won’t	do.	

It’s	relatively	easy	to	build	observability	into	your	internal	

tooling.	If	you	don’t	already	have	a	system	to	record	the	behav-

ior	of	internal	tools,	now	might	be	the	time	to	consider	buying	

or	building	one.	An	internal	tool	should	be	able	to	record	every	

invocation	and	its	outcome,	along	with	various	metadata	about	

89

Developer Experience

the interaction. Most importantly, it should record how long a

developer has waited to get output from the tool.

If you make it easy to capture user experience data from

internal	tools	—	say,	by	providing	a	standard	API	that	other	

engineers	can	use	to	collect	signals	that	can	be	stored	usefully	

alongside other tooling data — internal tool authors will tend

to capture some metrics.

Developer surveys

Surveys are integral tools for comprehending developer expe-

rience	beyond	the	team	level.	They	provide	two	kinds	of	value:

• Validation. Surveys	act	as	a	barometer,	gauging	

whether the organization's strategies, tools, and

policies align with its intended outcomes. Essentially,

they	confirm	whether	you’re	on	the	right	path	toward	

improving the developer experience.

• Discovery. Beyond mere validation, surveys also

function as windows into the uncharted territories

of developer needs, wants, and challenges. They

help organizations discover fresh avenues for

improvement.

An internal tool should be able
to record every invocation and
its outcome, along with various
metadata about the interaction.

90

Developer Experience Developer Experience

HOW TO USE SURVEYS

It’s good to do a comprehensive developer survey once or

twice	a	year,	plus	more	informal	but	more	frequent	surveys	

with smaller audiences. Here are a few statements that we’ve

found particularly useful to evaluate:

• I feel safe expressing concerns to my team.

• My team makes frequent improvements

based	on	feedback.

• My team systematically validates user needs.

• I have enough uninterrupted time for focus work.

• It’s	simple	to	make	changes	to	the	codebases	

I work with.

Ask	about	a	timeframe	short	enough	to	remember	but	

long	enough	to	be	representative:	“the	last	month”	or	“the	last	

week,”	but	probably	not	“the	last	six	months.”	Clearly	defining	

the	period	reduces	random	bias	from	people’s	interpreta-

tions and assumptions. With that in mind, avoid questions and

prompts that include “since the last survey,” as well as those

that ask how or whether something has improved over an

indefinite	timeframe.	Use	past	survey	data	to	assess	changes	

over time (and recognize that fully rolling out a survey ques-

tion will take at least two rounds).

You	can	make	the	responses	fully	open	to	promote	trans-

parency	and	discussion,	or	you	can	run	a	confidential	survey	

to	lower	the	threshold	for	reporting	problems.	Either	way,	

explicitly	clarify	how	the	responses	will	be	used	and	reported.	

If	you	go	with	confidential	surveys,	you	need	to	be	mindful	of	

a few key points:

91

Developer Experience

• Limit access to identifying data. For example,

a	breakdown	of	survey	results	by	tenure	can	be	

extremely identifying in a small-ish company that’s

been	around	for	a	while.

• If you say the responses are anonymous, mean it.

Make	it	impossible	to	link	a	response	back	to	a	person	

or any identifying metadata.

• Anonymous doesn’t mean unpublished. Make

clear	to	survey	respondents	whether	you	will	publish	

unattributed	commentary.

THE CHALLENGES OF SURVEYS

One of the primary issues you’ll run into with surveys is the

squeaky wheel syndrome, where the loudest voices over-

shadow	more	valuable	feedback.	In	this	situation,	you	could	

inadvertently	channel	resources	to	appease	this	vocal	sub-

set,	neglecting	the	broader	(and	sometimes	more	pertinent)	

issues.	Another	challenge	is	recency	bias,	where	respondents	

predominantly	focus	on	recent	events	while	filling	out	the	

survey,	leaving	behind	older	yet	still	impactful	concerns.	This	

bias	can	sometimes	amplify	the	significance	of	recent	minor	

issues while diminishing long-standing critical ones.

Sampling	bias	further	complicates	the	survey	landscape.	

Without meticulous design and execution, surveys might

inadvertently	cater	to	a	specific	developer	subset.	You	might	

end	up	with	feedback	that	doesn’t	holistically	represent	the	

sentiments	of	the	entire	organization.	Your	best	way	to	avoid	

this	bias	is	to	encourage	participation	at	a	level	close	to	100%	

of the engineering organization.

92

Developer Experience Developer Experience

Then there’s the challenge of striking the right frequency.

If you deploy surveys too often, you may run into survey

fatigue,	diminishing	the	quality	and	quantity	of	feedback.	

However, sparse surveys can fail to capture rapidly evolving

sentiments.

There’s	also	an	inherent	risk	in	tying	objectives	too	tightly	

to	survey	outcomes.	While	responding	to	feedback	is	vital,	it’s	

equally	important	to	recognize	that	surveys	are	but	one	facet	

of a multi-dimensional landscape. Over-reliance can lead to

reactive strategies rather than proactive ones.

DIVERSIFYING FEEDBACK CHANNELS

While	surveys	provide	valuable	insights,	diversifying	feedback	

channels ensures a richer, more rounded understanding of

developer experience. Regular one-on-one sessions, open

discussions,	a	forum	for	submitting	frustrations,	shadowing	

sessions,	or	even	casual	coffee	chats	can	offer	more	contin-

uous insights into developer sentiments. Telemetry can also

provide	continuous,	passive	feedback	on	tool	usage	patterns	

and potential pain points.

Last survey Survey

Something
is improved

The reliability of survey
data decreases the

further you go in time

Something
else breaks

Surveys offer a
snapshot of the
present moment

THE CHALLENGES OF SURVEYS

93

Developer Experience

Fighting back
against interruptions
One of the critical concepts in productivity is flow, as

represented	by	the	efficiency	and	flow	pillar	of	SPACE.	

Uninterrupted	time	is	the	building	block	of	flow;	in	most	orga-

nizations,	there	tend	to	be	plenty	of	interruptions	to	measure.	

These	come	in	all	shapes	and	sizes,	from	meetings	to	GitHub	

outages	and	everything	in	between.	Some	interruptions	are	

more negatively impactful than others, especially in aggre-

gate. The right metrics for your purposes will depend on how

you understand the nature of the productivity challenges in

your organization.

Interruptions — anything that yanks a developer out of

that	elusive	flow	state	—	can	appear	out	of	nowhere.	They’re	

often	untracked	and	underestimated	in	their	ability	to	derail	

focus and productivity.

Some interruptions are genuinely urgent and require

immediate attention. Others stem from outdated processes or

habits	and	can	be	scheduled	for	later.	An	approach	based	on	

Incident Incident
report

Wait for
code review

Review someone
else’s ticket

Team
meeting

Ship itShip itStart a Start a
ticketticket

Resume
ticket

Submit
code review

Incorporate
code review

feedback

INTERRUPTIONS

94

Developer Experience Developer Experience

the Eisenhower matrix can involve categorizing interruptions

based	on	urgency	and	impact	and	then	devising	a	strategy	to	

handle	each	category	effectively.

 1 Urgent and important. Issues like production outages

that demand immediate attention and generally have

team-wide consensus for prioritization. Certain cus-

tomer situations can also fall into this category.

 2 Important but not urgent. Things like discussing plans

for	a	new	feature	are	important,	but	not	necessarily	

time-sensitive.

 3 Urgent but unimportant. This is the class of inter-

ruptions	that	an	engineer	could	solve	but	an	equally	

good	and	more	timely	response	is	available	elsewhere.	

For example, this kind of interruption happens when

a	junior	engineer	asks	a	senior	to	answer	a	blocking	

question, even though the answer is well-documented

and was also answered via chat last week.

Urgent Not urgent

N
ot

 im
p

or
ta

nt
Im

p
or

ta
nt

1

3

2

4

Crying baby
Kitchen fire
Some calls

Exercise
Vocation
Planning

Interruptions
Distractions
Other calls

Trivia
Busy work

Time wasters

THE EISENHOWER MATRIX

95

Developer Experience

 4 Neither urgent nor important. Questions or issues

that	could	have	waited	or	been	solved	through	other	

means.	These	are	especially	disruptive	because	they	

often	don’t	warrant	the	break	in	focus	they	cause.	For	

example,	this	can	happen	when	a	manager	stops	by	an	

engineer’s desk without recognizing that the engineer

is otherwise focused.

Certain	types	of	interruptions	require	a	broader	organi-

zational	fix	rather	than	individual	adjustments	—	interruptions	

like meetings, internal support, external support, and produc-

tion	incidents.	These	not	only	impact	the	effectiveness	of	

individual	software	developers	but	can	also	destabilize	teams	

and processes as a whole, especially as a company scales.

The meeting dilemma

Meetings	within	an	organization	exhibit	a	wide	range	of	effec-

tiveness.	Some	prove	to	be	instrumental	in	decision-making	

and	collaboration,	while	others	can	frankly	be	worthless	(and	

occasionally verging on harmful). The underlying cost of a

meeting isn’t limited to its duration; it extends to the inter-

ruption of deep focus and to the trust that the meeting either

creates or erodes.

Engineers	should	designate	blocks	of	time	for	focused	

work, and these should remain inviolate. Calendar features like

auto-decline can safeguard these precious hours, preserving

dedicated work time.

A universal objective should be
to secure uninterrupted blocks
of concentration for all roles.

96

Developer Experience Developer Experience

The	frequency	of	meetings	often	correlates	with	job	

responsibilities.	Leadership	roles,	such	as	engineering	manag-

ers	and	tech	leads,	may	find	their	schedules	more	populated	

with	meetings	than	other	team	members.	Despite	this	vari-

ance,	a	universal	objective	should	be	to	secure	uninterrupted	

blocks	of	concentration	for	all	roles.	For	example,	among	ICs,	

you could aim for at least four hours of focused work on four

days each week.

Minimizing	and	optimizing	meetings	frees	up	significant	

blocks	of	productive	time	for	teams.	Here	are	some	effective	

strategies to consider:

• Clear objectives. Before scheduling a meeting,

clarify	its	purpose.	If	the	objective	can	be	achieved	

through an email or a quick chat, opt for that instead.

• Audit recurring meetings. Periodically review

standing meetings to determine if they’re still relevant

or	if	their	frequency	can	be	reduced.	Some	weekly	

meetings	might	be	just	as	effective	if	held	bi-weekly	

or monthly.

• Agenda requirement. Insist on an agenda for every

meeting. This ensures that the meeting stays on

track and can also help participants evaluate if their

attendance is essential.

• Time limits. Meetings that exceed 30 minutes should

be	rare,	and	meetings	that	exceed	an	hour	should	be	

exceptional. Even for large undertakings, long meet-

ings tend to hurt more than they help. Conversely,

a	series	of	shorter	meetings,	with	time	to	reflect	on	

each, is more likely to result in powerful outcomes.

97

Developer Experience

• Limit attendees. Invite only those who are essential

to	the	meeting’s	objective.	A	smaller,	more	relevant	

group can often make decisions more quickly.

• Share the outcome of meetings. Small, focused,

agenda-driven	meetings	don’t	need	to	be	secretive.	

Create a mailing list or chat channel where people

can stay up to date on projects or meetings they’re

interested in without having to attend all the time or

feel like they’re missing out.

• Empowered decision-making.	Establish	clear	

protocols for decision-making that don’t always rely

on group consensus. Empower individuals or smaller

teams to make decisions where appropriate.

• Asynchronous updates. For meetings that are

informational	or	offer	updates,	consider	asynchro-

nous	methods.	This	could	be	recorded	video	updates	

or	written	reports	(or	both)	that	individuals	can	review	

independently.	Remember	that	you’ll	frequently	

need to provide the same message multiple times in

multiple ways, so if it’s important — like an all-hands

meeting — make a point of ensuring that people

receive and incorporate the information.

A note on asynchronous collaboration

Asynchronous	collaboration	offers	a	significant	advantage	

over certain in-person meetings: it allows engineers to choose

when to engage with a task rather than disrupt their focus for

a meeting at a potentially inconvenient time. It also alleviates

the need to cram knowledge work into a 30-minute timeslot.

98

Developer Experience Developer Experience

To	be	successful	at	working	asynchronously	on	decisions,	

it’s	useful	to	specifically	define	how	you’ll	handle	them.	One	

practical step is to create templates for common deci-

sion-making processes. These templates provide a structured

approach to things like:

• Design reviews. A document to propose designs for

a	significant	new	feature	or	capability.	It	describes	

the	business	need,	explains	non-goals	and	tradeoffs,	

and	solicits	feedback	on	key	decisions.

• Build vs. buy decisions. A document to capture the

pros	and	cons	of	building	a	solution	in-house	versus	

purchasing	an	off-the-shelf	solution.

• New API or common library designs. A document

detailing	the	requirements,	expected	benefits,	and	

potential impacts of introducing a new API or shared

library.

Shared	documents	become	a	central	part	of	asynchro-

nous	collaboration.	They	allow	team	members	to	add	their	

input, edit, and comment in real time or at their convenience.

Establishing	a	window	of	time	for	commenting	—	a	set	period	

during	which	team	members	can	review	and	provide	feedback	

—	ensures	that	discussions	are	timely	but	not	rushed.

While the goal is to minimize live meetings, some topics

may still require synchronous communication to move the

conversation	forward.	A	meeting	is	valid	in	this	case,	but	think	

carefully	about	who	needs	to	be	there.	To	make	it	easy	for	

people to consume the meeting without attending, record

the meeting and designate someone to take notes.

The	effectiveness	of	asynchronous	collaboration	depends	

on the tools at hand. Even today, some mainstream tools fall far

99

Developer Experience

short	of	supporting	collaborative	asynchronous	work.	Invest	in	

tools	that	enable	real-time	editing,	commenting,	and	sharing.	

While	asynchronous	collaboration	is	powerful,	there	are	

also	times	when	a	quick	synchronous	discussion	is	more	effec-

tive.	Providing	the	means	to	effortlessly	transition	to	an	audio	

or video call, or the physical space to have a quick conversa-

tion, can resolve complex issues more quickly.

Internal support

Internal support in a software organization ensures the smooth

functioning of teams, particularly as software engineers assist

their peers in navigating and completing tasks. It acts as a

bridge,	filling	in	knowledge	gaps,	clarifying	doubts,	and	facil-

itating	better	understanding.	As	vital	as	it	is,	this	very	support	

system is typically disorganized, ad hoc, unrecognized, and

itself unsupported — for example, a single developer support

channel in a messaging tool where everyone asks everything.

As	such,	it	can	become	a	significant	source	of	interruptions,	

especially when the demand surpasses the supply of knowl-

edgeable	peers	who	can	assist.

One common cause of increased demand for internal

support	is	the	absence	of	self-serve	solutions.	In	an	ideal	

scenario, engineers would have tools, platforms, and docu-

mentation	at	their	disposal	to	independently	find	answers	to	

their	queries.	Without	these,	they’re	left	with	no	choice	but	to	

seek help from others, leading to frequent interruptions for

both	the	one	seeking	help	and	the	one	providing	it.	Similarly,	

when clear, straightforward processes (aka happy paths) for

common	tasks	aren’t	established,	engineers	often	find	them-

selves	in	a	labyrinth	of	trial	and	error,	pulling	in	colleagues	to	

help navigate.

100

Developer Experience Developer Experience

Perhaps more insidious is the issue of knowledge siloing.

When	knowledge	becomes	the	domain	of	a	select	few	and	

isn’t	disseminated	broadly,	it	creates	an	environment	where	

constant	queries	become	the	norm.	Those	in	the	know	are	

frequently interrupted, and those out of the loop continually

seek	guidance.	If	a	subset	of	engineers	always	provides	sup-

port,	it	may	prevent	others	from	developing	problem-solving	

skills	and	self-sufficiency.	You	can	solve	this	through	knowl-

edge-sharing sessions, shadowing sessions, and partnering

on	tasks	unfamiliar	to	other	team	members.

However,	relying	heavily	on	certain	team	members	can	

stifle	growth	opportunities	for	the	wider	team.	Similarly,	if	only	

a few individuals are leaned on for support continuously, it

may lead to a scenario where critical knowledge resides with

only	those	few.	This	creates	vulnerability	in	the	team	dynamics	

if	these	individuals	are	unavailable.	As	a	leader,	you	need	to	

make sure those people make a point of taking real time away

from work so that the organization can see how it reacts.

While	internal	support	is	an	invaluable	aspect	of	work	

in software organizations, without the right structures and

resources in place, it can morph from a support system into

a persistent source of disruptions for a small group of peo-

ple	who	could	be	producing	a	lot	more	value.	AI	search	tools	

and	knowledge-sharing	sessions	can	help	fill	the	gap,	while	

collaborative	ways	of	working	can	help	it	from	showing	up	in	

the	first	place.

When knowledge becomes the domain
of a select few and isn’t disseminated
broadly, it creates an environment where
constant queries become the norm.

101

Developer Experience

External support

External support, especially for customers, users, and

user-facing colleagues, comes with its own set of challenges.

The	requests	can	be	unpredictable,	of	varying	quality,	and	

cover	a	broad	spectrum	of	topics.	Some	may	be	straight-

forward	and	easy	to	address,	while	others	might	be	vague,	

complex,	or	even	misdirected,	requiring	more	time	and	effort	

to resolve.

To manage these sorts of demands, tools and processes

like	ticket	queues	and	WIP	limits	are	invaluable.	Here’s	why.

• Visibility. Ticket queues provide a clear view of

incoming requests, shedding light on the current

workload	and	types	of	issues	being	raised.

• Prioritization. Understanding the queue helps in

resource	allocation.	It	becomes	feasible	to	triage	

requests, ensuring that high-priority or urgent issues

are addressed swiftly and engineers are only pulled in

when necessary.

• Workload management. WIP	limits	act	as	a	buffer,	

ensuring that support teams aren’t swamped with

an	unmanageable	number	of	requests	at	once.	This	

allows for a consistent quality of support.

To	further	streamline	the	process,	office	hours	can	be	a	

big	help.	Setting	specific	periods	dedicated	to	addressing	

external queries ensures:

• Predictability. Both the support team and those

seeking	support	have	a	defined	window.	This	clarity	

helps in setting expectations.

102

Developer Experience Developer Experience

• Focus. When	not	in	the	office	hours	window,	teams	

can redirect their attention to other pressing tasks,

ensuring	a	balanced	distribution	of	effort	and	time.

Continually	analyze	your	support	workload	to	find	things	

you	could	proactively	address.	Self-serve	configuration,	UX	

improvements, help center articles, guides, or training ses-

sions can completely eliminate entire categories of customer

support requests.

Production incidents

Just as all meetings aren’t created equal, the same goes for

incidents. When assessing incidents, several factors matter.

• Frequency. How often are incidents happening?

• Severity. How	significant	is	the	problem	—	is	it	a	

minor	hiccup	or	a	full-blown	outage?	

• Impact.	What	were	the	broader	consequences	for	

systems and users?

• Time spent. How long did the incident last? How

much time did we spend on it after that?

If you’re tracking these parameters, do so transparently.

Incident metrics should inform, not intimidate, ensuring that

no one feels the need to underreport or diminish the scale of

an incident.

Truly	blameless	post-incident	reviews	can	be	transforma-

tive, providing a platform to dissect what went wrong and how

to prevent future occurrences. By identifying patterns and

drawing	up	actionable	items	from	each	incident,	teams	are	

better	poised	to	anticipate	and	mitigate	future	challenges.

103

Developer Experience

Moreover,	integrating	tools	for	incident	analysis	can	offer	

granular	insights,	highlighting	potential	areas	of	vulnerability.	

Implementing	a	first-responder	rotation	ensures	that	a	ded-

icated	team	is	always	on	standby,	primed	to	tackle	incidents,	

and	can	distribute	responsibility	more	evenly.

Are you interruption-aware?

Answering the following questions can reveal insights into

how well the organization is prepared to manage interruptions.

The	goal	isn’t	to	eliminate	them	entirely	but	rather	to	measure,	

reduce, and manage them in a way that aligns with the team’s

needs	and	the	organization’s	objectives.

 1 Do you have a system for tracking interrup-

tions? Understanding the nature and urgency of

interruptions can go a long way in managing them

effectively.	Are	you	capturing	data	on	what	kinds	

of interruptions are most frequent and which types

disproportionately	affect	certain	team	members?	

This will help in deciding where to invest time in

process improvements.

 2 Are you measuring the right things? Metrics

offer	a	quantitative	way	to	understand	the	bur-

den	of	interruptions,	but	are	you	measuring	the	

things	that	truly	matter?	For	instance,	beyond	just	

By identifying patterns and drawing up
actionable items from each incident,
teams are better poised to anticipate
and mitigate future challenges.

104

Developer Experience Developer Experience

tracking	the	number	of	meetings,	are	we	look-

ing at their ROI? And when it comes to internal

and	external	support,	do	you	have	visibility	into	

how much time is spent and the quality of those

interactions?

 3 How much slack do teams have? If you aim for

100% utilization, you’re setting yourself up for

failure.	What	level	of	buffer	time	do	you	build	into	

our	sprints	or	roadmaps	to	account	for	inevitable	

interruptions, and are you revisiting these assump-

tions periodically to ensure they still hold?

 4 How do you capture and share knowledge? Many

interruptions, especially internal support ones, can

be	reduced	through	better	knowledge	sharing.	Do	

you have a centralized repository, internal forums,

or	other	mechanisms	where	team	members	can	

find	answers	to	common	questions?	How	often	is	

this	resource	updated,	and	is	it	easily	accessible	to	

everyone?

 5 Are there more things you could automate or

make self-serve? Many interruptions stem from the

fact that it’s never seemed worthwhile to automate

something or make it self-serve for a non-engineer

— it seems easier to just have an engineer do it

when it needs doing. If you feel like interruptions

are	getting	in	your	way,	that	mindset	might	not	be	

helping. Automate the things that are pulling your

engineers’ attention away from their work.

The	dynamics	of	interruptions	will	change	significantly	as	

a company grows and its needs change. By taking an ongoing

105

Developer Experience

and proactive approach to these interruptions, software engi-

neering	organizations	can	build	more	sustainable,	efficient,	

and resilient work environments. When you make your pro-

cesses interruption-aware, your team can focus on what they

do	best:	building	great	products.

Setting experience goals
When	you	get	specific	about	the	source	of	interruptions	that	

prevent continuous focus, you have something more satisfy-

ing	than	just	satisfaction	surveys:	metrics	that	can	be	mea-

sured	reliably	and	consistently,	and	thus,	metrics	we	can	seek	

to improve. That doesn’t mean you throw out the satisfaction

survey; you just accept it as a lagging indicator as you improve

the	things	above.	Satisfaction	is	a	measurement	you	use	to	val-

idate your work, not something you try to chase week to week.

User	experience	objectives	(UXOs)	offer	a	complemen-

tary	framework	for	thinking	about	developer	experience.	With	

UXOs,	you	agree	on	acceptable	behavior	for	your	tools.	As	a	

few	very	basic	examples,	you	can	agree	that	 should

never take more than two minutes, saving in an editor should

rarely take more than two seconds, and CI/CD checks should

return results within 15 minutes.

These	UXOs	can	operate	independently,	guiding	expe-

rience goals for individual tools. Their potency increases

Tracking bad days across the
engineering organization provides
insights into common pain points
and opportunities for improvement.

106

Developer Experience Developer Experience

when	aggregated.	When	a	developer	experiences	breaches	

in	a	certain	number	of	UXOs,	you	know	that	the	developer	is	

having	a	bad	day.	Tracking	bad	days	across	the	engineering	

organization provides insights into common pain points and

opportunities for improvement.

UXOs	also	furnish	real-time	insights	into	engineers’	expe-

riences,	allowing	for	adaptable	goal-setting	and	innovative	

problem-solving.	Setting	goals	around	UXOs	versus	complet-

ing	a	specific	project	or	task	lets	you	work	to	improve	devel-

oper	experience	without	being	constrained	by	rigid	plans.

Don’t	confuse	UXOs	with	service-level	objectives	(SLOs),	

as	unlike	SLO	breaches,	UXO	breaches	aren’t	necessarily	

urgent;	they	define	expectations	for	tool	behavior	that	the	

user can measure their experience against, which can guide a

tooling team on where to spend its time.

UXOs	focus	on	meaningful	enhancements,	fostering	a	

direct	connection	between	the	lived	experiences	of	engineers	

and	the	people	responsible	for	supporting	those	experiences.	

They	fill	the	gap	when	you’re	tempted	to	set	goals	based	on	

surveys or other sources of organizational health metrics.

Just	because	you’re	not	setting	goals	for	these	metrics	

doesn’t mean that you shouldn’t know what “good” would look

like in your organization. Getting to 100% satisfaction or zero

regretted attrition is unrealistic, so what would your organiza-

tion	consider	success?	There’s	likely	to	be	a	ceiling	on	overall	

satisfaction	and	a	floor	on	regretted	attrition,	both	put	in	place	

by	your	organization’s	culture	and	incentive	structure.

Developer Experience

107

What’s next?
In this chapter, we looked at developer experience and the

things	that	influence	it,	focusing	especially	on	different	types	

of interruptions and mitigations. We wrestled with the fact that

most	developer	experience	data	will	be	qualitative	and	that	

many	developer	experience	problems	require	non-code	solu-

tions and explored options to set developer experience goals.

In the next chapter, we’ll look at how to put the lessons of

this and previous chapters into practice.

Developer Experience

FURTHER READING

Drive: The Surprising Truth About What Motivates Us,

by	Daniel H. Pink. Explores the core elements of motivation

and	how	they	can	be	applied	in	a	work	environment,	includ-

ing for software developers.

Flow: The Psychology of Optimal Experience,	by	Mihaly

Csikszentmihalyi. Discusses in detail how uninterrupted

focus	allows	people	to	reach	a	state	of	heightened	eff	 i-

ciency and satisfaction in their work.

Peopleware: Productive Projects and Teams,	by	Tom

DeMarco and Timothy Lister. A classic in the software

development	fi	eld,	focusing	on	the	human	side	of	software	

development and team dynamics.

Deep Work: Rules for Focused Success in a Distracted World,

by	Cal Newport. A guide on how to achieve focused and

productive work, which is particularly relevant for developers

dealing with complex tasks and needing deep focus.

Agile Retrospectives: Making Good Teams Great,

by	Esther Derby and Diana Larsen. Provides tools and

techniques	for	eff	ective	agile	retrospectives,	emphasizing	

continuous	improvement	and	problem-solving	throughout	a	

project's life.

108

Developer Experience Developer Experience

Site Reliability Engineering: How Google Runs Production

Systems,	by	Niall Richard Murphy, Betsy Beyer, Chris

Jones, and Jennifer Petoff . An in-depth look into Google’s

approach	to	building,	deploying,	monitoring,	and	main-

taining some of the largest software systems in the world,

including incident management processes.

The Field Guide to Understanding “Human Error”,	by	Sidney

Dekker.	While	not	exclusively	about	software	engineering,	

this	book	is	highly	regarded	in	the	Learning	From	Incidents	

community.	It	off	ers	insights	into	how	to	understand	and	

learn from human errors in complex systems.

109

110

Putting It All Together Putting It All Together

5Putting It All
Together

Build: Elements of an Effective

Software Organization

.

111

Putting It All Together

N
ow it’s time to take everything you’ve

read	and	turn	it	into	a	plan.	Your	com-

pany’s size, age, and culture guarantee

that your situation is unique, so we’re

limited	in	making	hyper-specific	recom-

mendations. Still, there are some proven

patterns in structuring any organization for success, rolling out

an	effectiveness	effort,	and	choosing	and	monitoring	metrics.

In this chapter, we’ll share our experience with the founda-

tional	work	of	identifying	and	eliminating	bottlenecks	at	the	

team level. Then, we’ll outline a high-level framework for imple-

menting	an	organization-wide	effectiveness	effort.	We’ll	wrap	

up	by	talking	about	the	challenges	of	managing	change	and	

sharing a framework for managing change-related feelings.

Identifying and eliminating
delivery bottlenecks
At Swarmia, we’ve seen time and again that when teams focus

on	improving	just	a	few	key	areas,	the	payoff	comes	quickly.

• Workflow.	What	does	the	flow	of	work	look	like	for	

your team? Does everything take forever, or do things

normally	go	fine,	with	the	exception	of	some	worri-

some	outliers?	Do	you	routinely	finish	the	things	you	

start? How much time does work spend in a waiting

state?

• Priorities & WIP limits. Does your team have clear,

stable	priorities?	How	many	things	does	your	team	

work	on	at	once?	Is	it	generally	obvious	to	software	

engineers what they should work on next? Do you feel

like	your	team	is	too	busy	to	ever	do	anything	well?

112

Putting It All Together Putting It All Together

• Keeping the lights on (KTLO). How much time does

your	team	spend	doing	chores	or	fighting	fires	due	

to	past	decisions?	How	does	this	affect	your	ability	to	

deliver	predictably?	How	does	it	impact	morale?

• Manual work and toil. What does the team do man-

ually	on	a	somewhat	predictable	basis	and	why?	Are	

your	tests,	deployments,	and	rollbacks	all	automated?	

Does your team planning include time to automate

these tasks regularly?

• Decisions owned outside the team. How often does

the team need to wait on someone on the outside to

make progress with their work?

Here’s a closer look at each area, what it looks like when

you	have	bottlenecks,	and	what	to	start	doing	today to get

things	on	a	better	path.

WORKFLOW

What to watch for

• Consistent delays in task completion.

• Certain	types	of	tasks	are	routinely	blocked.
• Unpredictable	delivery.

What to start doing today

• Track cycle times and change lead times for your

code	changes	and	issues	(task,	story,	epic,	bug,	etc.)

• Track the time engineers spend waiting on CI/CD.

• Track the time work is waiting or idle.

113

Putting It All Together

PRIORITIES & WIP LIMITS

What to watch for

• More	work	in	progress	than	members	on	the	team.
• Overwhelmed engineers.

• Frequent changes in priorities.

• Unfinished	work.
What to start doing today

• Set a WIP limit for roadmap projects/stories, starting

with	the	number	of	devs	in	the	team	divided	by	2.	

• 	Learn	how	to	collaborate	and	plan	work	in	a	way	
that allows multiple engineers to work on a larger

roadmap item.

• 	Only	allow	a	higher	WIP	limit	when	workflow	metrics	
are	not	ballooning	because	of	the	change.

• Maintaining some “slack” in your capacity increases

your	ability	to	deliver	faster.	Aim	for	75-85%	utiliza-

tion of your team (not 100%) to preserve the team’s

productivity.

KTLO & REACTIVE WORK

What to watch for

• KTLO consumes more than 30% of a team’s time.

• Incidents cause frequent disruptions to focused

work.

• Team goals are routinely delayed due to lack of slack

to handle reactive work.

114

Putting It All Together Putting It All Together

What to start doing today

• Track change failure rate to understand quality.

• Track engineering investment according to the

Balance Framework, explained in Chapter 2.

• If a team is spending more than 30% of its capacity

on KTLO and reactive work, consider whether this

could	be	reduced	by	prioritizing	work	that	improves	

quality, customer support (discussed in Chapter 4),

or developer productivity. If prioritizing that work

isn’t practical, consider whether the team is the right

size for the surface it owns.

MANUAL WORK AND TOIL

What to watch for

• Recurring manual tasks are time-consuming and

error-prone.

• Deployments require human attention.

What to start doing today

• Automate CI/CD and deployments.

• Create a culture where quick automations just get

done without extensive discussion.

• 	Check	your	investment	balance	to	make	sure	you	
always invest at least 10% of your capacity in produc-

tivity improvements.

• 	Encourage	and	incentivize	conversations	about	
productivity improvements.

115

Putting It All Together

DECISIONS OWNED OUTSIDE THE TEAM

What to watch for

• Work stalls while waiting for external input.

• Poor sequencing of dependencies.

• Top-down priority changes.

What to start doing today

• 	Consider	the	guidance	in	Chapter	2	about	organiz-
ing	teams	and	making	tradeoffs.	Are	the	tradeoffs	

you made still the right ones?

• Ensure your team has the skills it needs to operate

effectively	without	requiring	regular	technical	

assistance.

• Quantify the impact of processes that are external

to	your	team	in	terms	of	wait	time,	effort,	and	

interruptions.

• 	Establish	visibility	into	the	progress	of	cross-team	
initiatives.

Finding opportunities in these areas is usually painfully

straightforward, and chances are good that engineers in

your	organization	already	have	strong	ideas	about	what	to	

do.	Acting	on	those	opportunities	will	require	finding	ways	to	

invest in the time and culture needed to implement solutions

now and moving forward.

Convenient fallacies to avoid

Certain	fallacies	tend	to	come	up	whenever	people	talk	about	

bottlenecks.	In	the	course	of	your	conversations,	it	will	be	

tempting for you or someone else to say things like:

116

Putting It All Together Putting It All Together

• “We aren’t doing enough up-front require-

ment-gathering.” Detailed up-front requirements

aren’t	just	unnecessary	—	they	can	be	detrimental	

when	they	restrict	a	team’s	ability	to	adapt	and	evolve	

as projects progress. The most successful projects

embrace	evolving	requirements,	allowing	for	innova-

tion and responsive changes. Adhering too rigidly to

initial	specifications	leads	to	inefficiency	and	stifles	

innovative solutions.

• “What we really need is more people.” The notion

that	insufficient	staffing	is	a	primary	bottleneck	

overlooks the underlying issue of WIP limits. Adding

more	staff	to	a	project	does	not	solve	productivity	

problems;	it	often	exacerbates	them	due	to	onboard-

ing costs and increased coordination challenges.

Effective	productivity	stems	from	ruthless	prioritiza-

tion and managing and optimizing the workload and

capabilities	of	the	existing	team,	not	indiscriminately	

increasing team size.

• “We just need to plan better.” Extensive planning

is often mistakenly idolized as the key to successful

project	execution.	Over-planning	can	bind	a	team	to	

a	trajectory	that	may	become	irrelevant	as	project	

dynamics	evolve.	Effective	planning	requires	balance	

—	it	provides	direction,	but	not	so	much	that	it	

impedes	flexibility	and	rapid	response	to	change.

• “It doesn’t work that way here.” Perhaps when

you	hear	this,	you’ll	have	stumbled	upon	the	exact	

problem,	but	it’s	not	one	you	can	solve	with	code.	

Culture	change	might	be	needed	to	embrace	all	the	

recommendations	in	this	book,	and	culture	change	is	

scary and hard.

117

Putting It All Together

Generally,	be	wary	of	claims	that	more	processes	will	make	

things	go	faster,	and	be	skeptical	when	someone	suggests	a	

headcount	fix	(unless	they’re	advocating	for	staffing	a	plat-

form	team,	that	is).	Remember,	any	proposed	fix	that	changes	

the	size,	shape,	or	remit	of	a	team	can	affect	productivity	—	

positively or negatively — for months.

Keep effectiveness top of mind

An	effective	engineering	organization	is	a	differentiator	in	

recruiting	and	retaining	engineers	and	bringing	value	to	your	

users.	Engineering	effectiveness	should	be	an	ongoing	top-of-

mind	concern	because	it’s	an	engineering	organization’s	single	

best	lever	for	delivering	more	and	better	business	results.

Encourage your team to experiment with new methods,

tools, and processes. WIP limits are especially interesting

to	experiment	with	if	you	haven’t	done	so	before.	Create	an	

environment where process experimentation is allowed and

part of the team’s culture. Whether it’s adopting new software

tools or implementing automation, these experiments can lead

to	significant	productivity	gains.

Embed	continuous	improvement	into	your	team’s	routine.	

Regularly	discuss	topics	like	workflow,	priority	management,	

and automation opportunities. This keeps the team focused on

productivity and encourages a culture of ongoing improvement.

Use these discussions not only to identify areas for improve-

ment	but	also	to	plan	and	commit	to	specific	actions.	Keep	the	

focus on the team’s way of working, not on any individual.

Involve	business	stakeholders	in	your	improvement	initia-

tives.	Their	understanding	and	support	can	be	pivotal,	espe-

cially when changes impact timelines or require resources.

Demonstrate with data that the proposed changes align with

118

Putting It All Together Putting It All Together

business	goals,	and	lean	on	“the	business”	to	support	you	

with	time,	tooling,	and	training.	Yes,	this	could	be	hard,	but	

improvements in this space don’t come for free in the short

term, even while they pay for themselves in the long term.

Alternatively,	don’t	involve	business	stakeholders	if	your	

reality	doesn’t	allow	for	it.	You	can	make	improvements	just	

within your group team, without support from the organization

or	the	business,	but	you	may	need	to	

get creative in the short term. In the

long term, demonstrated improve-

ment	might	buy	you	the	agency	to	

make	bigger	changes	with	bigger	

results — or give you a great story

to tell when you start looking for a

new role.

Implement and track metrics

that accurately reflect the team’s

improvement over time. This could

include tracking DORA, SPACE, or other relevant metrics.

Regularly review these metrics to assess whether your changes

are working. This data-driven approach not only helps to

fine-tune	your	tactics	but	also	provides	tangible	evidence	

of	improvement,	which	can	be	motivating	for	the	team	and	

reassuring for stakeholders.

Know when to move on

As	one	bottleneck	is	addressed	and	resolved,	it	ceases	to	be	

the	limiting	factor	in	your	workflow.	The	new	bottleneck	is	in	

another area of the process. At this point, it’s time to move

from	actively	working	on	the	first	bottleneck	toward	monitor-

ing	it	to	ensure	there’s	no	backsliding.

Engineering
effectiveness is
an engineering
organization’s
single best lever
for delivering
more and better
business results.

119

Putting It All Together

By	continuously	moving	the	focus	to	the	current	bottle-

neck,	you	maintain	a	steady	flow	in	your	processes,	enhancing	

overall	efficiency	and	productivity.	Identifying,	addressing,	

and	monitoring	bottlenecks	is	an	ongoing	process	—	one	part	

of	an	overall	effort	at	continuous	improvement.

Driving an effectiveness effort
Implementing	an	engineering	effectiveness	program	is	no	

small feat, and thoughtfully sequencing your approach will

increase your chances of success. Here, we sketch a roadmap

to	guide	you	on	this	journey,	broken	down	into	six	key	stages:	
 1 baseline, 2 research, 3 act, 4 invest, 5 normalize, and
 6 sustain	(or	BRAINS,	for	a	memorable	acronym):

 1 In the baseline stage, you lay the groundwork for your

journey. Start with an inventory of the metrics you have

today. Implement tooling and processes to understand

the current delivery and team health situation.

 2 Next, immerse yourself in the environment of your

engineering teams during the research stage, seeking

to	understand	their	challenges	and	victories	first-hand	

through shadowing, interviews, and hands-on work.

 3 With this understanding, act immediately to implement

small	but	meaningful	improvements	that	can	positively	

impact the team’s work.

 4 After tackling quick wins, it’s time to invest in longer-

term improvements. Start standardizing processes and

tools across teams to reduce complexity and improve

consistency.

120

Putting It All Together Putting It All Together

 5 Having implemented these changes, you can work to

normalize the new processes across the organization,

increasing adoption to maximize impact.

 6 Finally, commit to long-term investments in improving

the developer experience in the sustain stage. The chal-

lenges you face will evolve as the company itself does.

 1 BASELINE

The	first	step	is	understanding	your	current	situation.	

Start	from	the	table	stakes	identified	in	Chapter	1	(for	

organizations) and Chapter 3 (for teams). Does your orga-

nization	uphold	and	support	these	table	stakes?	If	not,	as	

mentioned	earlier,	there	will	be	a	ceiling	on	the	improvement	

you can achieve.

Take an inventory of the delivery-related metrics you have

today	and	identify	useful	ones	that	would	be	easy	to	add.	Take	

a	moment	to	assess	team	health	by	considering	satisfaction,	

attrition rates, and engagement levels. If you’re still small, this

should happen organically; once you’re larger than 10 engi-

neers,	you	may	also	want	to	create	more	intentional	feedback	

mechanisms. Paint a picture of where things stand today for

yourself and your stakeholders.

This is also a good time to consider implementing DORA

metrics that accurately represent your software delivery

performance. Getting these metrics in place demands devel-

oping	a	discipline	(and	systems)	that	you’ll	be	grateful	for	in	

the future.

Now is also a good time to routinely attach Balance

Framework	labels	to	your	work	items	to	start	to	paint	a	picture	

of	where	your	time	is	going.	You	may	want	to	build	or	buy	a	

121

Putting It All Together

tool	that	makes	this	easier.	Again,	this	is	a	practice	you’ll	be	

grateful for later.

Remember,	the	goal	of	this	stage	is	not	to	create	bench-

marks	for	comparison	between	teams	or	individuals	but	rather	

to understand the present state so you can track improvement

over time.

 2 RESEARCH

Knowing how your engineering teams experience their work

is	essential	to	achieving	real	engineering	eff	ectiveness	wins.	

Spend time shadowing engineers, conducting interviews,

and doing hands-on work. Understand their daily challenges,

frustrations, and moments of triumph. Pay particular attention

to	their	work	patterns,	collaboration	habits,	and	pain	points.	

Watch	for	systemic	issues	that	might	be	slowing	them	down	

or	causing	unnecessary	stress.	This	fi	rst-hand	understanding	

will	be	invaluable	in	identifying	eff	ective	productivity	and	

experiencing improvements.

time

 N Normalize

 A Act

 B Baseline

 R Research

 I Invest

 S Sustain

im
p

ac
t

THE BRAINS FRAMEWORK

122

Putting It All Together Putting It All Together

Now is also the time to review your early Balance Frame-

work data. Where are teams spending their time? Are there

any	surprises	in	the	data?	What	adjustments	need	to	be	made?

 3 ACT

Now that you understand your engineers’ current state and

unique needs, it’s time to tackle the quick wins. These are small,

relatively easy improvements that nonetheless have a mean-

ingful	impact	on	the	daily	work	of	your	teams.	They	could	be	

anything from streamlining a standard process to eliminating

a manual task or addressing a common source of frustration.

Who’s going to work on these quick wins? For now, ensure

that every one of your engineers knows they have permission

to	spend	a	little	time	making	things	better.	Consider	giving	

an engineer or two a few weeks on rotation to tackle an issue

they’re	passionate	about.	Publicly	celebrate	both	large	and	

small	improvements,	and	publicize	the	biggest	opportunities.

 4 INVEST

With the low-hanging fruit addressed, it’s time to focus on lon-

ger-term improvements at the organizational level. This often

involves standardizing processes and tools across teams to

reduce complexities and inconsistencies. Consider creating a

dedicated	platform	team	responsible	for	developing	and	main-

taining shared tools and infrastructure. This investment in stan-

dardization	can	result	in	significant	productivity	boosts	and	

make	cross-team	collaboration	smoother	and	more	effective.

Starting	a	team	doesn’t	have	to	be	a	big	production;	the	

team lead already works at your company and is looking for

a new opportunity. They’re the self-directed, consistently

high-impact	person	who’s	been	poking	at	flaky	tests	and	

123

Putting It All Together

exceeded	expectations	last	quarter	by	automating	the	entire	

build	and	deployment.	They’re	a	favorite	collaborator	among	

technical and non-technical folks alike, and they live for a good

session of code archaeology.

The second engineer is also a colleague, and they were

exceeding	expectations	within	their	first	months.	They’re	a	

smart execution machine in

need of a good mentor. They’re

interested in humans and com-

puters, hungry for challenging

problems,	and	don’t	mind	 if	

people in the real world don’t

see their work.

You	will	be	most	successful	

if this team thinks of internal

engineer platforms as prod-

ucts and understands that products have users — users whom

you need to talk to and listen to, especially when they’re frus-

trated. A platform team’s ultimate goal is to help those users

produce	more	value	for	the	same	amount	of	effort.

 5 NORMALIZE

Standardization	only	delivers	its	full	benefits	when	it	becomes	

the	default.	You	want	to	create	happy	paths	for	common	

development	tasks,	like	adding	a	new	API	endpoint	or	building	

a new feature in the user interface. Drive the adoption of these

new processes, making it the new normal for how things are

done. This step will require clear communication to explain the

changes	and	their	benefits,	thorough	training	to	ensure	every-

one knows how to work within the new systems, and incentives

to encourage adoption.

Starting a team
doesn’t have to be a
big production; the
team lead already
works at your company
and is looking for a new
opportunity.

124

Putting It All Together Putting It All Together

Support development teams throughout this transition

and	be	open	to	feedback	and	suggestions	for	improvement.	

You	can	form	an	adoption	squad	to	help	teams	make	the	

transition	and	understand	the	benefits.	Whenever	possible,	

automate	these	transitions.	When	that’s	not	possible,	be	sure	

to frame migration and usage instructions from the perspec-

tive of the platform user, not the platform creator.

 6 SUSTAIN

Maintaining	and	improving	engineering	effectiveness	is	not	a	

one-off	task	but	a	long-term	commitment.	As	your	company	

grows,	so	will	the	complexity	of	your	engineering	effectiveness	

challenges. Continually invest in improving your understand-

ing of these evolving challenges and devising innovative

solutions.	Set	strategic	goals	that	reflect	this	commitment	

and foster a culture of continuous learning and improvement.

Remember,	you	are	focusing	on	improving	the	overall	

effectiveness	of	your	engineering	organization,	not	on	spe-

cific	tactics	or	short-term	goals.	This	mindset	will	help	you	

remain	adaptable	and	responsive	to	the	changing	needs	of	

your engineering teams.

Managing change
Introducing	new	ways	of	working	can	be	a	daunting	task.	To	do	

it	well,	you	need	to	be	thoroughly	familiar	with	the	change	and	

its	reasons	while	also	considering	the	human	ability	to	have	big	

feelings	about	seemingly	small	changes.	If	you	simply	show	up	

one day and say, “We’re going to start measuring your work,”

things	probably	aren’t	going	to	go	well.	

125

Putting It All Together

Engineering leadership coach Lara Hogan writes and

speaks	about	the	BICEPS framework,	developed	by	Paloma

Medina, for understanding these human reactions. She

emphasizes that everyone needs these six things to feel at

ease	about	work	and	that	any	kind	of	change	can	suddenly	

disrupt any one of them.

Human need Strategies

Belonging:
The need to feel

part of a community.

Ensure changes don’t isolate
individuals and maintain
inclusive team dynamics.

Improvement/progress:
The desire for personal

and professional growth.

Link changes to
development opportunities

and career advancement.

Choice:
The need for

autonomy in work.

Involve employees in
the change process and

preserve their control over
their work.

Equality/fairness:
The importance of
equitable	treatment.

Apply changes consistently
and transparently to avoid
perceptions of unfairness.

Predictability:
The preference for

stability	and	certainty.

Communicate clearly
about	changes,	providing	a	

roadmap to alleviate anxiety.

Significance:
The desire to do
meaningful work.

Align changes with
organizational goals

and show how each role
contributes	to	these	

objectives.

126

Putting It All Together Putting It All Together

With	these	core	needs	in	mind,	it’s	easy	to	see	that	the	first	

step	in	driving	change	is	building	trust	with	the	people	who	will	

be	affected.	Trust,	of	course,	has	to	be	earned;	even	if	you’re	

operating in a generally high-trust environment, a change

perceived	as	substantial	can	make	people	uneasy.	Especially	

in	low-trust	environments,	trust-building	activities	are	going	

to	be	essential	to	successful	change.

There are a few things you can do to earn trust around a

change	effort.

• Offer	social	proof	that	this	change	has	been	valuable	

elsewhere.	Of	course,	all	businesses	are	different,	but	

if	other	businesses	in	your	industry	or	at	your	stage	

have	embraced	certain	practices,	that	should	carry	

some weight.

• Run a pilot or proof of concept with a small set of

teams. Iteration within a small group will help you

decide what you want to roll out more widely.

• Participate in the process you’re trying to improve

and	experience	the	difficulties	first-hand.	Share	your	

learnings and let them inform your next steps.

• Celebrate	successes	widely	and	loudly,	and	

incentivize the change you want to see.

Transparency likewise plays a huge role in how a change

is received. Communicate clearly, frequently, and in multiple

channels	about	why	you’re	making	the	changes	and	what	out-

comes	you	hope	to	achieve	from	them.	Communicate	about	

what’s	working	and	what’s	not.	Communicate	about	how	lead-

ership	is	contributing	to	and	supporting	the	improvements	in	

substantive	ways.	

127

Putting It All Together

Many organization-wide changes can take months to roll

out,	and	rolling	out	an	engineering	effectiveness	effort	is	no	

different.	Along	the	way,	inform	your	next	steps	with	feedback	

from	the	people	impacted	by	the	changes	you’re	making.	As	

with	any	feedback,	you	don’t	have	to	act	on	all	of	it,	but	be	

prepared to explain how you choose what to act on and what

to set aside.

An	engineering	effectiveness	effort	can	touch	many	of	

the BICEPS needs. For example, belonging	can	be	affected	

if	a	person	feels	like	their	work	won’t	be	as	valued	when	people	

start	looking	at	effectiveness	metrics,	predictability can take

a hit as software engineers wonder how their performance

reviews	will	be	affected,	and	significance	can	suffer	if	people	

feel	their	contribution	is	being	reduced	to	numbers.	

Whole	books	have	been	written	on	managing	change,	

so	we	are,	at	best,	scratching	the	surface	with	the	concepts	

discussed here. The most important takeaway is that change

is	hard	and	thus	needs	to	be	approached	with	care.	While	you	

can	just	flip	a	switch	to	introduce	a	new	process,	tool,	or	other	

way of working, it’s not likely to go well — a change of any

significance	needs	thoughtful	planning	and	communication.

Trust, of course, has to be earned;
even if you’re operating in a
generally high-trust environment,
a change perceived as substantial
can make people uneasy.

128

Putting It All Together Putting It All Together

What’s next?
Throughout your effectiveness journey, it’s important to

focus on the ultimate goal: improving the experience and

productivity of your engineers. This means avoiding getting

too	caught	up	in	specific	metrics	or	tactics	at	the	expense	of	

actual improvement.

This chapter provided a solid foundation for that jour-

ney,	but	once	again,	every	organization	and	team	is	unique.	

Remember	to	remain	flexible,	responsive,	adaptable,	and	

cognizant of the changing needs of your engineering teams.

Putting It All Together

FURTHER READING

Leading Change,	by	John P. Kotter. Kotter provides an eight-

step process for leading change with powerful insights and

practical tools.

The Goal: A Process of Ongoing Improvement,	by	Eliyahu M.

Goldratt.	This	book	introduces	the	Theory	of	Constraints,	a	

methodology for identifying the most important limiting factor

(i.e.	bottleneck)	in	a	process	and	systematically	improving	it.

Switch: How to Change Things When Change Is Hard,	by	

Chip Heath and Dan Heath.	Off	ers	insights	into	how	to	eff	ect	

transformative change in organizations, which is useful for

understanding and managing the human side of organizational

change.

Lean Thinking: Banish Waste and Create Wealth in Your

Corporation,	by	James P. Womack and Daniel T. Jones.

Provides a deep dive into lean principles, focusing on eliminat-

ing	waste	and	improving	eff	 iciency,	which	are	key	to	address-

ing	process	bottlenecks.

Crucial Conversations: Tools for Talking When Stakes Are

High,	by	Kerry Patterson, Joseph Grenny, Ron McMillan,

and Al Switzler.	Valuable	insights	into	handling	high-stakes	

conversations.

Core Needs: BICEPS,	by	Paloma Medina. A framework for

thinking	about	human	needs,	informed	by	neuropsychologists,	

psychologists, and sociologists. palomamedina.com/bicepspalomamedina.com/biceps

129

Putting It All Together

WE’RE HERE TO HELP

Now that you’ve made it this far, you
understand that a lot goes into building
and sustaining an eff ective engineering

organization — more than technology, more
than people, more than process.

When	you’re	ready	to	introduce	an	engineering	eff	ectiveness	

program,	this	book	will	point	you	in	the	right	direction.	As	you	

start to understand the landscape at your own company, con-

sider the market for existing software that could support your

particular goals.

Of	your	options,	Swarmia	is	the	only	engineering	eff	ective-

ness platform that focuses on holistic, continuous improve-

ment	across	business	outcomes,	developer	productivity,	and	

developer experience.

If	you	want	to	increase	healthy	visibility	into	your	engineer-

ing	organization,	have	higher-quality	conversations	based	on	

team-level productivity insights, and proactively improve the

experience	of	building	software	at	your	company,	let’s	talk.	

Swarmia	just	might	be	the	right	partner	for	your	journey.

Whether you’d like a quick tour of Swarmia or a casual,

no-strings-attached	conversation	with	Otto	or	Rebecca,	feel	

free to email us at hello@swarmia.comhello@swarmia.com . .

130

131

About the authors

Rebecca Murphey is the Field CTO at Swarmia and hosts

the	Engineering	Unblocked	podcast.	Previously,	she	drove	

engineering	effectiveness	efforts	as	an	engineering	leader	

at Stripe and Indeed, implementing some of the most trans-

formative productivity improvements these companies saw

during her tenure. She lives in Durham, North Carolina.

Otto Hilska is a serial entrepreneur and the founder and

CEO	of	Swarmia.	In	2009,	he	co-founded	Flowdock	(the	

Slack	before	Slack),	acquired	by	Rally	Software	in	2013.	After	

leaving	Rally,	Otto	worked	as	the	Chief	Product	Officer	of	

Smartly.io, leading a fast-growing software organization while

navigating	emerging	bottlenecks.	He	lives	in	Helsinki.

About Swarmia

We	know	from	experience	that	building	an	effective	software	

organization is not a one-and-done project. That’s why we’ve

designed	Swarmia,	the	engineering	effectiveness	platform,	to	

guide organizations on their continuous improvement journey,

whether they’re only just getting started or are further along

the path.

Thousands of companies, from startups to enterprises,

use	Swarmia	to	maximize	business	outcomes,	developer	

productivity, and developer experience. Learn more at

swarmia.comswarmia.com.	For	more	resources	related	to	this	book,	visit	

swarmia.com/buildswarmia.com/build.

Endmatter

132

Acknowledgments

Ari Koponen, for providing extensive technical editing

and input.

Jack Humphrey,	for	providing	invaluable	feedback	on	an	

early	draft	of	this	book.

Eero Kettunen and Miikka Holkeri, for their input and

feedback.

Pinja Dodik, for championing and guiding this project.

Feedback and errata

If	you	believe	you’ve	found	an	error	in	this	book	or	something	

that	can	be	improved,	please	contact books@swarmia.combooks@swarmia.com

to	ensure	your	feedback	is	considered	for	the	next	edition.	

133

Endmatter

Oskari Kallio	in	Helsinki	created	the	beautiful	illustrations	

in	this	book.	The	typefaces	used	in	this	book	are	Factor	A	

by	Ilya Naumoff	and	Bagnard	by	Sebastien Sanfilippo.

The	book	was	edited	by	Ari Koponen	and	copy-edited	by	

Christy Gibbs.

